scholarly journals Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks

2014 ◽  
Vol 38 (9) ◽  
pp. 1881-1895 ◽  
Author(s):  
SOTIRIOS FRAGKOSTEFANAKIS ◽  
SASCHA RÖTH ◽  
ENRICO SCHLEIFF ◽  
KLAUS-DIETER SCHARF

2017 ◽  
Vol 29 (6) ◽  
pp. 1184 ◽  
Author(s):  
Wu-jiao Bai ◽  
Peng-jing Jin ◽  
Mei-qian Kuang ◽  
Quan-wei Wei ◽  
Fang-xiong Shi ◽  
...  

The aim of the present study was to investigate the effects of heat stress on heat shock protein (HSP) 70 expression and mitogen-activated protein kinase (MAPK) and protein kinase (PK) B signalling during prostaglandin F (PGF)-induced luteal regression. During pseudopregnancy, rats were exposed to heat stress (HS, 40°C, 2 h) for 7 days and treated with PGF or physiological saline on Day 7; serum and ovaries were collected 0, 1, 2, 8 or 24 h after PGF treatment. The early inhibitory effect of PGF on progesterone was reduced in HS rats. HSP70 expression in response to PGF was significantly enhanced in HS rats. PGF-induced phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 was significantly greater in the HS group; however, HS rats exhibited elevated basal levels of phosphorylation of p38 MAPK, but not ERK1/2. PGF treatment increased expression of activating transcription factor (ATF) 3 at 2 h, which was inhibited by heat stress. Evaluating PKB signalling revealed that phosphorylation of p-Akt (Thr308 and Ser473) was reduced at 8 and 24 h after PGF treatment in both non-heat stress (NHS) and HS groups, but there were no significant differences between the HS and NHS groups at any of the time points. In conclusion, the present study provides further evidence that heat stress may enhance HSP70 and affect ERK1/2 and ATF3 expression, but not Akt activation, during PGF-induced luteal regression in pseudopregnant rats.



2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Aref Alshameri ◽  
Fahad Al-Qurainy ◽  
Abdel-Rhman Gaafar ◽  
Salim Khan ◽  
Mohammad Nadeem ◽  
...  

The threat of heat stress on crop production increased dramatically due to global warming leading to the rise on the demand of heat-tolerant crops and understanding their tolerance. The leguminous forage crop Guar [Cyamopsis tetragonoloba (L.) Taub] is a high-temperature tolerant plant with numerous works on its tolerance at morph-physiological levels but lack on molecular thermotolerance level. In the current study, the differential gene expression and the underlying metabolic pathways induced by heat treatment were investigated. An RNA-Seq study on Guar leaves was carried out to estimate gene abundance and identify genes involved in heat tolerance to better understand the response mechanisms to heat stress. The results uncovered 1551 up- and 1466 downregulated genes, from which 200 and 72 genes with unknown function could be considered as new genes specific to guar. The upregulated unigenes were associated with 158 enzymes and 102 KEGG pathways. Blast2GO, InterProScan, and Kyoto Encyclopaedia of Genes and Genomes packages were utilized to search the functional annotation, protein analysis, enzymes, and metabolic pathways and revealed hormone signal transduction were enriched during heat stress tolerance. A total of 301 protein families, 551 domains, 15 repeats, and 3 sites were upregulated and matched to those unigenes. A batch of heat-regulated transcription factor transcripts were identified using the PlantTFDB database, which may play roles in heat response in Guar. Interestingly, several heat shock protein families were expressed in response to exposure to stressful conditions for instance small HSP20, heat shock transcription factor family, heat shock protein Hsp90 family, and heat shock protein 70 family. Our results revealed the expressional changes associated with heat tolerance and identified potential key genes in the regulation of this process. These results will provide a good start to dissect the molecular behaviour of plants induced by heat stress and could identify the key genes in stress response for marker-assisted selection in Guar and reveal their roles in stress adaptation in plants.



1998 ◽  
Vol 274 (6) ◽  
pp. F1029-F1036 ◽  
Author(s):  
Karen M. Gaudio ◽  
Gunilla Thulin ◽  
Andrea Mann ◽  
Michael Kashgarian ◽  
Norman J. Siegel

The stress response was studied in suspensions of tubules from immature (IT) and mature (MT) rats after noninjury, heat, oxygen, and anoxia. Under all conditions, IT exhibited more exuberant activation of heat shock transcription factor (HSF) than MT. Characterization of activated HSF in immature cortex revealed HSF1. Also, 2 h after each condition, heat shock protein-72 (HSP-72) mRNA was twofold in IT. As the metabolic response to 45 min of anoxia, 20-min reoxygenation was assessed by measuring O2 consumption (O2C). Basal O2C was manipulated with ouabain, nystatin, and carbonylcyanide p-chloromethyoxyphenylhydrazone (CCCP). Basal O2C in IT were one-half the value of MT. After anoxia, basal O2C was reduced by a greater degree in MT. Ouabain reduced O2C to half the basal value in both noninjured and anoxic groups. Basal O2C was significantly stimulated by nystatin but not to the same level following anoxia in MT and IT. Basal O2C was also stimulated by CCCP, but after anoxia, CCCP O2C was significantly less in MT with no decrease in IT, suggesting mitochondria are better preserved in IT. Also, O2C devoted to nontransport activity was better maintained in IT.



1994 ◽  
Vol 14 (11) ◽  
pp. 7557-7568 ◽  
Author(s):  
J Zuo ◽  
R Baler ◽  
G Dahl ◽  
R Voellmy

Heat stress regulation of human heat shock genes is mediated by human heat shock transcription factor hHSF1, which contains three 4-3 hydrophobic repeats (LZ1 to LZ3). In unstressed human cells (37 degrees C), hHSF1 appears to be in an inactive, monomeric state that may be maintained through intramolecular interactions stabilized by transient interaction with hsp70. Heat stress (39 to 42 degrees C) disrupts these interactions, and hHSF1 homotrimerizes and acquires heat shock element DNA-binding ability. hHSF1 expressed in Xenopus oocytes also assumes a monomeric, non-DNA-binding state and is converted to a trimeric, DNA-binding form upon exposure of the oocytes to heat shock (35 to 37 degrees C in this organism). Because endogenous HSF DNA-binding activity is low and anti-hHSF1 antibody does not recognize Xenopus HSF, we employed this system for mapping regions in hHSF1 that are required for the maintenance of the monomeric state. The results of mutagenesis analyses strongly suggest that the inactive hHSF1 monomer is stabilized by hydrophobic interactions involving all three leucine zippers which may form a triple-stranded coiled coil. Trimerization may enable the DNA-binding function of hHSF1 by facilitating cooperative binding of monomeric DNA-binding domains to the heat shock element motif. This view is supported by observations that several different LexA DNA-binding domain-hHSF1 chimeras bind to a LexA-binding site in a heat-regulated fashion, that single amino acid replacements disrupting the integrity of hydrophobic repeats render these chimeras constitutively trimeric and DNA binding, and that LexA itself binds stably to DNA only as a dimer but not as a monomer in our assays.







2014 ◽  
Vol 87 (5) ◽  
pp. 652-662 ◽  
Author(s):  
Ashra Kolhatkar ◽  
Cayleih E. Robertson ◽  
Maria E. Thistle ◽  
A. Kurt Gamperl ◽  
Suzanne Currie


2004 ◽  
Vol 82 ◽  
pp. S181
Author(s):  
S. Lima ◽  
A. Cedenho ◽  
P. Hassun ◽  
R. Bertolla ◽  
S. Oehninger ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document