scholarly journals Changing light promotes isoflavone biosynthesis in soybean pods and enhances their resistance to mildew infection

2021 ◽  
Author(s):  
Xiaoman Li ◽  
Caiqiong Yang ◽  
Jianhua Chen ◽  
Yuan yuan He ◽  
Juncai Deng ◽  
...  
Author(s):  
Xiaoman Li ◽  
Cai-qiong Yang ◽  
Jun-cai Deng ◽  
Congwei Xie ◽  
Xinli Xiao ◽  
...  

Mildew severely reduces soybean yield and quality, and pods are the first line of defense against pathogens. Maize-soybean intercropping (MSI) reduces mildew incidence on soybean pods; however, the reason remains unclear. Previous studies confirmed the key function of soy isoflavone in soybean mildew resistance, while changing light (CL) from maize shading is the most important environmental feature in MSI. CL also regulates isoflavone biosynthesis in soybean seeds. We hypothesized that CL affects isoflavone accumulation in soybean pods, impacting their disease resistance. In the present study, shading treatments were applied during different developmental stages of soybean plants according to various CL environments under MSI. Chlorophyll fluorescence imaging (CFI) and classical evaluation methods confirmed that CL, especially vegetative stage shading (VS), enhances pod resistance to mildew. Further metabolomic analyses and exogenous inhibitor experiments revealed the important relationship between jasmonic acid (JA) and isoflavone biosynthesis, which has a synergistic effect on the enhanced resistance of CL-treated pods to mildew. VS promoted the biosynthesis and accumulation of constitutive isoflavones upstream of the isoflavone pathway, such as aglycones and glycosides, in soybean pods. When mildew infects pods, endogenous JA signaling stimulates the biosynthesis of downstream inducible malonylated isoflavones and glyceolin to improve pod resistance.


2020 ◽  
Vol 653 ◽  
pp. 121-129
Author(s):  
RB Taylor ◽  
S Patke

Small mobile crustaceans are abundant on seaweeds. Many of these crustaceans rapidly abandon their host if it is detached from the seafloor and floats towards the surface, but the trigger for this ‘bailout’ behaviour is unknown. We tested 2 potential cues, i.e. rapid change in light and rapid change in water pressure, using >1 mm epifauna on the brown seaweed Carpophyllum plumosum as a model system. Bailout occurred in response to reduced water pressure, but not to changing light, as (1) bailout occurred at similar rates in light and dark, (2) bailout occurred on the seafloor when water pressure was reduced within a transparent chamber by the equivalent of ~0.5 m depth or more, and (3) little bailout occurred when water pressure was held constant within the chamber while seaweeds were raised to the surface. Increase in pressure (simulating sinking) did not induce bailout. The rate of bailout increased with increasing magnitude of pressure reduction but was not influenced greatly by the rate of change of pressure within the range tested (up to an equivalent of 0.4 m depth s-1). The use of pressure rather than light as a cue for bailout is consistent with the need for seaweed-associated crustaceans to rapidly abandon a detached host and relocate to suitable habitat during both day and night.


1970 ◽  
Vol 23 ◽  
Author(s):  
M. Van Miegroet

A  certain number of measurable characteristics of tree leaves (morphological  characteristics, absorption of light radiation, intensity of respiration and  photosynthesis) are clearly linked with the presence of physiologically  active pigments in the leaves.     Leaf characteristics are highly and inequally influenced by changing  conditions of light environment, especially those related to light intensity,  light quality and duration of the daily illumination period. These  modifications do not only apply to light radiation as created under  laboratory conditions, but also to light conditions ensuing from the place in  the crown of a single tree, the social position of the tree in a forest stand  and the site factors in general.     There are also changes taking place due to the progression of the  vegetation period, at the end of which all species are less tolerant or more  light demanding. The reaction of the leaves towards light radiation out of  different regions of the spectrum is also different. The so-called blue light  radiation (λmax = 440 nm) seems to be of the greatest importance in this  relation, as species react quite different to its action.     The biggest variation in leaf characteristics due to changing light  environment was measured for oak and beech, which both react quickly and are  qualified as 'photolabile species'. No important variations occur in leaves  of ash and maple, which therefore are qualified as 'photostable species'.      As a consequence of variable reactions to changing light conditions, the  relationships between the species are continually modified, even in such a  way that their potential for dominance is not constant.     The classical division into tolerant and intolerant species or  classification of the species based upon the degree of light demand, is  highly inaccurate and it seems preferable to speak of relative light demands  and relative tolerance. All these observations and conclusions bring about a  clear confirmation of the necessity to recognize the individuality of the  single tree, the special character of each growth condition, the own  structure of each forest stand, the specific reaction to one sided  modifications of environmental factors. This is especially important for an  intensive sylvicultural practice.     They also prove the necessity for more physiological and biochemical  research to arrive at a better understanding of growth and its mechanism.      Sylviculture in fact must try to regulate, on an expanded scale, the  phenomens of growth, which is the exchange, absorption and transformation of  energy.     A practical interpretation and regulation of fundamental laws of physiology  and growth will be possible as soon as a clinical form of sylviculture is  created and the adequate instrumentarium developed.


2012 ◽  
Vol 71 (5) ◽  
pp. 699-711 ◽  
Author(s):  
Patricia Hornitschek ◽  
Markus V. Kohnen ◽  
Séverine Lorrain ◽  
Jacques Rougemont ◽  
Karin Ljung ◽  
...  

Machines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 66
Author(s):  
Tianci Chen ◽  
Rihong Zhang ◽  
Lixue Zhu ◽  
Shiang Zhang ◽  
Xiaomin Li

In an orchard environment with a complex background and changing light conditions, the banana stalk, fruit, branches, and leaves are very similar in color. The fast and accurate detection and segmentation of a banana stalk are crucial to realize the automatic picking using a banana picking robot. In this paper, a banana stalk segmentation method based on a lightweight multi-feature fusion deep neural network (MFN) is proposed. The proposed network is mainly composed of encoding and decoding networks, in which the sandglass bottleneck design is adopted to alleviate the information a loss in high dimension. In the decoding network, a different sized dilated convolution kernel is used for convolution operation to make the extracted banana stalk features denser. The proposed network is verified by experiments. In the experiments, the detection precision, segmentation accuracy, number of parameters, operation efficiency, and average execution time are used as evaluation metrics, and the proposed network is compared with Resnet_Segnet, Mobilenet_Segnet, and a few other networks. The experimental results show that compared to other networks, the number of network parameters of the proposed network is significantly reduced, the running frame rate is improved, and the average execution time is shortened.


1932 ◽  
Vol 16 (2) ◽  
pp. 349-355 ◽  
Author(s):  
John H. Welsh

1. The speed of progression of Unionicola, a water mite, is influenced by light; and over a certain range increases as a function of the light intensity. 2. The relation between speed and light intensity is not a simple one, as the speed of progression is due to the combined effect of amplitude of steps and frequency of leg movement. 3. The amplitude of stride increases in direct proportion to the logarithm of the light intensity, while the frequency of stepping has no such simple relation to intensity. 4. The change in length of stride with changing light intensity indicates a tonic effect of light on the locomotor muscles. Such an effect has been observed previously in studies of orientation, due to unequal illumination, which produces changes in posture.


2013 ◽  
Vol 162 (1) ◽  
pp. 484-495 ◽  
Author(s):  
David J. Lea-Smith ◽  
Nic Ross ◽  
Maria Zori ◽  
Derek S. Bendall ◽  
John S. Dennis ◽  
...  

Trees ◽  
1998 ◽  
Vol 12 (6) ◽  
pp. 326-333 ◽  
Author(s):  
R. Tognetti ◽  
Gianfranco Minotta ◽  
Simone Pinzauti ◽  
Marco Michelozzi ◽  
Marco Borghetti

Sign in / Sign up

Export Citation Format

Share Document