Evaluation of candidate genes related to litter traits in Indian pig breeds

Author(s):  
Yoya Vashi ◽  
Ankit Magotra ◽  
Dipjyoti Kalita ◽  
Santanu Banik ◽  
Nihar R. Sahoo ◽  
...  
Animals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1423
Author(s):  
André Albuquerque ◽  
Cristina Óvilo ◽  
Yolanda Núñez ◽  
Rita Benítez ◽  
Adrián López-Garcia ◽  
...  

Gene expression is one of the main factors to influence meat quality by modulating fatty acid metabolism, composition, and deposition rates in muscle tissue. This study aimed to explore the transcriptomics of the Longissimus lumborum muscle in two local pig breeds with distinct genetic background using next-generation sequencing technology and Real-Time qPCR. RNA-seq yielded 49 differentially expressed genes between breeds, 34 overexpressed in the Alentejano (AL) and 15 in the Bísaro (BI) breed. Specific slow type myosin heavy chain components were associated with AL (MYH7) and BI (MYH3) pigs, while an overexpression of MAP3K14 in AL may be associated with their lower loin proportion, induced insulin resistance, and increased inflammatory response via NFkB activation. Overexpression of RUFY1 in AL pigs may explain the higher intramuscular (IMF) content via higher GLUT4 recruitment and consequently higher glucose uptake that can be stored as fat. Several candidate genes for lipid metabolism, excluded in the RNA-seq analysis due to low counts, such as ACLY, ADIPOQ, ELOVL6, LEP and ME1 were identified by qPCR as main gene factors defining the processes that influence meat composition and quality. These results agree with the fatter profile of the AL pig breed and adiponectin resistance can be postulated as responsible for the overexpression of MAP3K14′s coding product NIK, failing to restore insulin sensitivity.


2021 ◽  
Author(s):  
Diao Liu ◽  
Chunlian Lu ◽  
Shang Li ◽  
Mengyu Jia ◽  
Yutao Miao ◽  
...  

Abstract Shenxian pigs are the only local black pig of Hebei Province, and were listed in the Genetics of Livestock and Poultry Resources of China in 2016. This breed of pig is considered to be a valuable local pig germplasm genetic resource in China. When compared with other introduced pig breeds, the Shenxian pig breed is characterized with early sexual maturity, short oestrus intervals, large litter sizes, and good meat quality, which are all of good research significance. However, the Shenxian pig variety was previously declared extinct in 2004 due to the introduction of a large number of foreign pig breeds. In order to preserve and study the Shenxian pig breed, the Hebei Zhengnong Animal Husbandry Co., Ltd. was established in Hebei Province for the purpose of preserving the purified Shenxian pig strain. In the present study, in order to understand the genetic variations of Shenxian pigs, identify selected regions related to superior traits, and accelerate the breeding processes of Shenxian pigs, the whole genome of the Shenxian pigs was resequenced and compared with that of large white pigs. The goal was to explore the germplasm characteristics of Shenxian pigs.The results obtained in this research investigation revealed that the genetic relationships of the Shenxian pig breed were complex, and that sub-populations could be identified within the general population. A total of 23M SNP sites were obtained by whole genome resequencing, and 1,509 selected sites were obtained via bioinformatics analyses. It was determined after annotation that a total of 19 genes were enriched in three items of bioengineering, molecular function, and cell composition.During this research investigation, the aforementioned 19 genes were subjected to GO and KEGG analyses. Subsequently, the candidate genes related to cell proliferation were obtained (DMTF1 and WDR5), which were considered to possibly be related to the slow growth and development of Shenxian pigs. In addition, the candidate genes related to lactation were obtained (CSN2 and CSN3). However, no genes related to meat quality traits were successfully screened.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kai Xing ◽  
Kejun Wang ◽  
Hong Ao ◽  
Shaokang Chen ◽  
Zhen Tan ◽  
...  

Abstract Fatness traits are important in pigs because of their implications for fattening efficiency, meat quality, reproductive performance and immunity. Songliao black pigs and Landrace pigs show important differences in production and meat quality traits, including fatness and muscle growth. Therefore, we used a high-throughput massively parallel RNA-seq approach to identify genes differentially expressed in backfat tissue between these two breeds (six pigs in each). An average of 37.87 million reads were obtained from the 12 samples. After statistical analysis of gene expression data by edgeR, a total of 877 differentially expressed genes were detected between the two pig breeds, 205 with higher expression and 672 with lower expression in Songliao pigs. Candidate genes (LCN2, CES3, DGKB, OLR1, LEP, PGM1, PCK1, ACACB, FADS1, FADS2, MOGAT2, SREBF1, PPARGC1B) with known effects on fatness traits were included among the DEGs. A total of 1071 lncRNAs were identified, and 85 of these lncRNAs were differentially expressed, including 53 up-regulated and 32 down-regulated lncRNAs, respectively. The differentially expressed genes and lncRNAs involved in glucagon signaling pathway, glycolysis/gluconeogenesis, insulin signaling pathway, MAPK signaling pathway and so on. Integrated analysis potential trans-regulating or cis-regulating relation between DEGs and DE lncRNAs, suggested lncRNA MSTRG.2479.1 might regulate the expressed level of VLDLR affecting porcine fat metabolism. These results provide a number of candidate genes and lncRNAs potentially involved in porcine fat deposition and provide a basis for future research on the molecular mechanisms underlying in fat deposition.


Animals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 518 ◽  
Author(s):  
Xie ◽  
Shi ◽  
Liu ◽  
Deng ◽  
Wang ◽  
...  

Runs of homozygosity (ROH) are contiguous homozygous genotype segments in the genome that are present in an individual since the identical haplotypes are inherited from each parent. The aim of this study was to investigate the frequency and distribution of ROH in the genomes of Landrace, Songliao black and Yorkshire pigs. We calculated two types of genome inbreeding coefficients and their correlation, including the inbreeding coefficient based on ROH (FROH) and the inbreeding coefficient based on the difference between the observed and expected number of homozygous genotypes (FHOM). Furthermore, we identified candidate genes in the genomic region most associated with ROH. We identified 21,312 ROH in total. The average number of ROH per individual was 32.99 ± 0.38 and the average length of ROH was 6.40 ± 0.070 Mb in the three breeds. The FROH results showed that Yorkshire pigs exhibited the highest level of inbreeding (0.092 ± 0.0015) and that Landrace pigs exhibited the lowest level of inbreeding (0.073 ± 0.0047). The average correlation between FROH and FHOM was high (0.94) within three breeds. The length of ROH provides insight into the inbreeding history of these three pig breeds. In this study, Songliao black pigs presented a higher frequency and average length of long ROH (>40 Mb) compared with those of Landrace and Yorkshire pigs, which indicated greater inbreeding in recent times. Genes related to reproductive traits (GATM, SPATA46, HSD17B7, VANGL2, DAXX, CPEB1), meat quality traits (NR1I3, APOA2, USF1) and energy conversion (NDUFS2) were identified within genomic regions with a high frequency of ROH. These genes could be used as target genes for further marker-assisted selection and genome selection.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Jingya Xu ◽  
Yuhua Fu ◽  
Yan Hu ◽  
Lilin Yin ◽  
Zhenshuang Tang ◽  
...  

Abstract Background A large number of pig breeds are distributed around the world, their features and characteristics vary among breeds, and they are valuable resources. Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved pig breeds. Results In this study, we performed GWAS using a standard mixed linear model with three types of genome variants (SNP, InDel, and CNV) that were identified from public, whole-genome, sequencing data sets. We used 469 pigs of 57 breeds, and we identified and analyzed approximately 19 million SNPs, 1.8 million InDels, and 18,016 CNVs. We defined six biological phenotypes by the characteristics of breed features to identify the associated genome variants and candidate genes, which included coat color, ear shape, gradient zone, body weight, body length, and body height. A total of 37 candidate genes was identified, which included 27 that were reported previously (e.g., PLAG1 for body weight), but the other 10 were newly detected candidate genes (e.g., ADAMTS9 for coat color). Conclusion Our study indicated that using GWAS across a modest number of breeds with high density genome variants provided efficient mapping of complex traits.


PLoS ONE ◽  
2018 ◽  
Vol 13 (11) ◽  
pp. e0207475 ◽  
Author(s):  
María Muñoz ◽  
Riccardo Bozzi ◽  
Fabián García ◽  
Yolanda Núñez ◽  
Claudia Geraci ◽  
...  
Keyword(s):  

2018 ◽  
Vol 50 (12) ◽  
pp. 1026-1035 ◽  
Author(s):  
Pingxian Wu ◽  
Kai Wang ◽  
Qiang Yang ◽  
Jie Zhou ◽  
Dejuan Chen ◽  
...  

Total number born (TNB), number born alive (NBA), and litter weight born alive (LWB) are critically important traits in pig production. The sow’s parity is one of the major factors influencing litter traits. Because of monogenic or polygenic contributions and the presence of temporal gene effects in different sows’ parities, it is difficult to clarify the biological and genetic background. To systematically explore the genetic mechanism of litter traits, we conducted 18 GWASs using single-step GWAS (ssGWAS) based on two breeds (908 Landrace and 1,130 Large White sow litter records) for each litter trait in different parities. A total of 300 Landrace and 300 Large White sows were genotyped by sequencing (GBS). ssGWAS was performed separately for each breed and each parity due to population stratification and temporal gene effect. In summary, we identified 80 (15 for Landrace and 65 for Large White), 227 (52 for Landrace, 175 for Large White), and 187 (34 for Landrace, 153 for Large White) single nucleotide polymorphisms (SNPs) affecting TNB, NBA, and LWB, respectively. Of them, we suggest that a total of 22 loci (SSC1: 125098202, SSC1: 117560058, SSC14: 147794697, SSC8: 84823302, SSC9: 143554876, and SSC9: 138766097 for Landrace; SSC1: 4023577, SSC1: 3859573, SSC1: 4891063, SSC16: 5197665, SSC10: 32050819, SSC13: 13552924, SSC13: 92819, SSC17: 3579607, SSC13: 196698221, SSC7: 30918403, SSC16: 46221484, SSC16: 46169204, SSC2: 41988642, SSC2: 44475457, SSC2: 42521875, and SSC7: 58411951 for Large White) are shared by TNB, NBA, and LWB. These results indicate the existence of gene temporal effect in each parity. Furthermore, our findings suggest four interesting candidate genes (FBXL7, ALDH1A2, LEPR, and DDX1) associated with litter traits in different parities that have a major effect on embryonic development progression. In conclusion, 22 crucial SNPs and four interesting candidate genes were identified for three litter traits across six parities. These findings advance our understanding of the genetic architecture of litter traits and confirm the presence of temporal gene effects in different parities. Importantly, functional validation studies for findings of particular interest are recommended in litter traits.


2006 ◽  
Vol 44 (08) ◽  
Author(s):  
C Schafmayer ◽  
J Tepel ◽  
JH Egberts ◽  
A Franke ◽  
S Buch ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document