scholarly journals Water Footprint Assessment of Rice Production in Malaysia Using LCA Approach

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Nurfarhain Mohamed Rusli ◽  
Zainura Zainon Noor ◽  
Shazwin Mat Taib ◽  
Pang Chien Han

The demand for rice in year 2030 is projected to be around 533 million ton of milled rice and known to be a high water consuming crop. In Asia alone, irrigated rice consumes as much as 150 billion m3 of water. With water being the most important component for rice production, yielding more rice with less water is therefore a formidable challenge.  The aim of this study is to assess the water footprint of paddy plantation at Muda Rice Granary, Kedah for five consecutive years; 2012 to 2016. By using the life cycle assessment (LCA) approach, the potential environmental impacts due to water consumption in planting and processing rice will be assessed. By integrating water footprint with LCA may assist in analysing environmental impacts associated with direct and indirect water consumption throughout the whole process; starting from raw material extraction, processing or production, distribution, use, and disposal. The methodological framework follows the LCA framework; setting up goal and specifying the scope of study, followed by inventory analysis, water footprint sustainability assessment and finally interpretation or response formulation. The research boundary for this study include the growing phase of paddy; seedling and cultivating of the paddy until the rice milling process. By implementing this water footprint research in paddy field, it will be essential not only in research area but also in agricultural development in Malaysia. Consequently, it will become the baseline for other agricultural in Malaysia in this research area.

2021 ◽  
Vol 1035 ◽  
pp. 1102-1108
Author(s):  
Yi Ling Wu ◽  
Xian Zheng Gong ◽  
Yu Liu ◽  
Xiao Qing Li ◽  
Xiao Fei Tian ◽  
...  

The ISO14046 water footprint evaluation method was used in this study to calculate the water shortage footprint and water degradation footprint in plate glass production, in order to improve the water efficiency and management level in the production process of plate glass in China. A certain enterprise in Hebei province was selected for investigation in 2018. The results show that the water shortage footprint generated by the production of flat glass was 0.435 m3H2Oeq/weight box. The proportion at raw material production stage was the largest, being 86%, so the water consumption control in raw material mining and the circulating water system should be strengthened and improved to reduce the fresh water consumption. Water degradation footprint in flat glass industry mainly consisted of eutrophication and acidification footprints. The eutrophication footprint was calculated as 0.027 kgNO3-eq/weight box, and water acidification footprint was 0.271 kgSO2eq/weight box. The largest proportion occurred at flat glass production stage. It should be paid attention at this stage, to update the relatively clean production equipments and add the waste gas processing steps to reduce pollution discharge.


2021 ◽  
Vol 10 (3) ◽  
pp. e22510313129
Author(s):  
Virgílio José Strasburg ◽  
Laura Souza Fontoura ◽  
Luiza Vigne Bennedetti ◽  
Evelyn Pôrto Lima Camargo ◽  
Bruno Jonatan de Sousa ◽  
...  

This study aimed to assess the environmental impacts of waste generation and the WF of raw materials used to provide meals to workers in a public hospital in southern Brazil over the course of the four seasons. This is a descriptive case study with a quantitative approach. The food raw materials that composed meals during 2019 were grouped by type of input. The items included from each food group were those which represented at least 85% (Multiple Criteria ABC Analysis) of the total amount used in kilograms within the respective group, in each month. The generation of residues from fruits, vegetables, and meat was estimated, as well as the WF of the items. For the statistical analysis, the Kruskal-Wallis test was used with a significance of 5%. Out of the 96 food inputs used, 49 items represented 86% of the total in kg, being the ones from which the environmental impacts were calculated. During the year, 435,411 meals were served. As for the number of diners, the highest frequency was observed in the winter and lowest in the summer. The annual waste percentage of the fruits acquired was 33.8%, being higher in the summer than in other seasons. Animal products were responsible for 64.2% of the WF, being higher in the winter. Assessing user frequencies, climatic conditions, and raw-material selection are important measures for the appropriate management of foodservices, as well as for assessing their environmental impacts.


2021 ◽  
Vol 2021 ◽  
pp. 142-147
Author(s):  
V. Sülar ◽  
B. Soy ◽  
K. Yağci

The awareness of the fact that the leading cause of the bad environmental conditions in our world is the human factor, has been increasing in recent years. This awareness enables people, companies, and organizations to decrease water consumption, to decrease carbon emission, to decrease using harmful chemicals, consequently people who are aware of global warming and depletion of resources are taking actions to save our planet for a sustainable life. Textile is one of the big sectors affecting the environmental pollution in a very bad way. For that reason, the present water footprint research was conducted on textiles and a denim company was especially chosen to examine the water footprint because of denim sector’s being one of the biggest polluters and wasting water in a huge amount in the textile industry. Firstly, the limits of the research were obtained as finishing operations under the scope of water footprint. The production steps and wastewater occurring points were obtained carefully for different denim finishing processes. After that stage, personal water consumption during denim apparel production was examined in detail. To create a good inventory analysis, many meetings were performed, and a survey was prepared to collect the data about wastewater of the company. By the help of this water footprint evaluation, the processes that create the most wastewater and the distribution of water footprint according to processes and other sources that cause water consumption were determined for one pair of denim trouser accepted as a functional unit in the context of the research.


2015 ◽  
Vol 668 ◽  
pp. 247-254 ◽  
Author(s):  
Yazmin Lisbeth Mack ◽  
Lidiane Santana Oliveira ◽  
Vanderley Moacyr John

Concrete is the single most widely used material in the world and is only surpassed by water in terms of consumption. By 2013, 4 billion tonnes of Portland cement were produced worldwide, enough to produce about 32 billion tonnes of concrete, which represents more than 4.6 tonnes of concrete per person per year. The high water consumption and large amount of wastewater generated in the concrete industry has become a very important environmental issue. Due to the large global use of concrete, it is essential to correctly assess the environmental impacts of this material including impacts related to water consumption. Life cycle perspective is important because it allows identifying and reducing water related potential environmental impacts associated with products. In concrete life cycle assessment, these impacts are not considered mostly because of lack of data. There are several methodologies for water footprint assessment, as The Water Footprint Assessment Tool and the ISO 14046:2014 standard -that is based on life cycle assessment (ISO 14044)-, as well as sustainable reporting guidelines, which include water assessment for organizations. The aim of this paper is to evaluate existing water footprint methodologies based on life-cycle assessment, their concepts and difficulties, and link them to concrete industry. Out of at least eighteen existing water footprint methodologies, it was found that four of them are feasible for cement based materials industry, however there are differences between the definitions and criteria adopted by each methodology.


Agronomy ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 230 ◽  
Author(s):  
Maria Pergola ◽  
Alessandro Persiani ◽  
Vittoria Pastore ◽  
Assunta Maria Palese ◽  
Carmine D’Adamo ◽  
...  

Horticultural farms are faced with the problem of disposing of huge amounts of agricultural by-products whose management requires sustainable solutions. Composting means to recycle organic waste to make compost—a high agronomic value product—able to positively affect soil quality: A good occasion to switch definitively from a conventional agriculture to an organic one. Nevertheless, composting can have negative direct/indirect environmental impacts. The aim of this research was to assess the sustainability of a windrow composting system, able to treat agricultural green waste of different typology (“light” and “heavy” with dry matter below or above 10%, respectively). Environmental impacts, energy consumptions, and production costs of all composting stages were evaluated by Life Cycle Assessment. Results show that the production of 1 ton of compost caused CO2eq emissions ranging from 199 to 250 kg and required between 1500 and 2000 MJ of energy; costs ranged between 98 and 162 euro, nevertheless lesser than the commercial green compost. The raw material typology affected significantly the composting process making compost based on “heavy” materials the most sustainable. These findings underline the need to spread this low technology process, easy to apply, especially in organic farms, and to promote the agronomic use of compost.


Author(s):  
Jing Liu ◽  
Mengyang Wu ◽  
Zhongbo Yu

Current environmental impact analyses are mainly focused on land, soil, energy, and material consumption, while studies regarding blue water consumption are scarce. Based on the water footprint concept, this study evaluates the impacts of blue water consumption on human health, ecosystem quality, and water resources in China from the production and consumption perspective, respectively. The results indicate that environmental impacts due to blue water consumption in China were 15.82 × 106 DALY (disability-adjusted life years), 96.54 × 109 m2∙year, and 175.20 × 109 MJ, and provinces such as Xinjiang, Shandong, and Hebei could be targets for achieving smaller environmental impacts in the future. More than 80% of environmental impacts were related to the agricultural sector. In terms of agricultural production, about 70% of the environmental impacts were related to product export. Measures such as the shift of the agricultural production pattern from water-intensive crops and animal products toward less water-intensive ones, the increase of agricultural water use efficiency, and the adoption of water-saving technologies could contribute to smaller environmental impacts. In terms of agricultural consumption, more than 95% of the environmental impacts were related to agricultural products produced locally. The focus was on increasing awareness of the importance of saving water and whether products were imported from regions with relatively small environmental impacts.


2018 ◽  
Vol 27 (4) ◽  
pp. 096369351802700 ◽  
Author(s):  
Mehmet Önal ◽  
Gökdeniz Neşer

Glass reinforced polyester (GRP), as a thermoset polymer composites, dominates boat building industry with its several advantages such as high strength/weight ratio, cohesiveness, good resistance to environment. However, proper recovering and recycling of GRP boats is became a current environmental requirement that should be met by the related industry. In this study, to propose in a cost effective and environmentally friendly way, Life Cycle Assessment (LCA) has been carried out for six scenarios include two moulding methods (namely Hand Lay-up Method, HLM and Vacuum Infusion Method, VIM) and three End-of-Life (EoL) alternatives(namely Extruding, Incineration and Landfill) for a recreational boat's GRP hulls. A case study from raw materials purchasing phase to disposal/recycling stages has been established taking 11 m length GRP boat hull as the functional unit. Analysis show that in the production phase, the impacts are mainly due to the use of energy (electricity), transport and raw material manufacture. Largest differences between the methods considered (HLM and VIM) can be observed in the factors of marine aquatic ecotoxicity and eutrophication while the closest ones are abiotic depletion, ozon layer depletion and photochemical oxidation. The environmental impact of VIM is much higher than HLM due to its higher energy consumption while vacuum infusion method has lower risk than hand lay-up method in terms of occupational health by using less raw material (resin) in a closed mold. In the comparison of the three EoL techniques, the mechanical way of recycling (granule extruding) shows better environmental impacts except terrestrial ecotoxicity, photochemical oxidation and acidification. Among the EoL alternatives, landfill has the highest environmental impacts except ‘global warming potential’ and ‘human toxicity’ which are the highest in extrusion. The main cause of the impacts of landfill is the transportation needs between the EoL boats and the licenced landfill site. Although it has the higher impact on human toxicity, incineration is the second cleaner alternative of EoL techniques considered in this study. In fact that the similar trend has been observed both in production and EoL phases of the boat. It is obvious that using much more renewable energy mix and greener transportation alternative can reduce the overall impact of the all phases considerably.


2020 ◽  
Vol 12 (6) ◽  
pp. 2208 ◽  
Author(s):  
Jamie E. Filer ◽  
Justin D. Delorit ◽  
Andrew J. Hoisington ◽  
Steven J. Schuldt

Remote communities such as rural villages, post-disaster housing camps, and military forward operating bases are often located in remote and hostile areas with limited or no access to established infrastructure grids. Operating these communities with conventional assets requires constant resupply, which yields a significant logistical burden, creates negative environmental impacts, and increases costs. For example, a 2000-member isolated village in northern Canada relying on diesel generators required 8.6 million USD of fuel per year and emitted 8500 tons of carbon dioxide. Remote community planners can mitigate these negative impacts by selecting sustainable technologies that minimize resource consumption and emissions. However, the alternatives often come at a higher procurement cost and mobilization requirement. To assist planners with this challenging task, this paper presents the development of a novel infrastructure sustainability assessment model capable of generating optimal tradeoffs between minimizing environmental impacts and minimizing life-cycle costs over the community’s anticipated lifespan. Model performance was evaluated using a case study of a hypothetical 500-person remote military base with 864 feasible infrastructure portfolios and 48 procedural portfolios. The case study results demonstrated the model’s novel capability to assist planners in identifying optimal combinations of infrastructure alternatives that minimize negative sustainability impacts, leading to remote communities that are more self-sufficient with reduced emissions and costs.


2021 ◽  
pp. 004051752110062
Author(s):  
Weiran Qian ◽  
Xiang Ji ◽  
Pinghua Xu ◽  
Laili Wang

Recycled polyester textile fibers stemming from waste polyester material have been applied in the textile industry in recent years. However, there are few studies focusing on the evaluation and comparison of the environmental impacts caused by the production of virgin polyester textiles and recycled polyester textiles. In this study, the carbon footprint and water footprint of virgin polyester textiles and recycled polyester textiles were calculated and compared. The results showed that the carbon footprint of the virgin polyester textiles production was 119.59 kgCO2/100 kg. Terephthalic acid production process occupied the largest proportion, accounting for 45.83%, followed by polyester fabric production process, ethylene production process, paraxylene production process, ethylene glycol production process and polyester fiber production process. The total carbon footprint of waste polyester recycling was 1154.15 kgCO2/100 kg, approximately ten times that of virgin polyester textiles production. As for the water footprint, it showed that virgin polyester fabric production and recycled polyester fabric production both had great impact on water eutrophication and water scarcity. Chemical oxygen demand caused the largest water eutrophication footprint, followed by ammonia-nitrogen and five-day biochemical oxygen demand. The water scarcity footprint of virgin polyester fabric production and recycled polyester fabric production was 5.98 m3 H2Oeq/100 kg and 1.90 m3 H2Oeq/100 kg, respectively. The comprehensive evaluation of carbon footprint and water footprint with the life cycle assessment polygon method indicated that the polyester fabric production process exhibited greater environmental impacts both for virgin polyester and recycled polyester.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 803
Author(s):  
Winnie Gerbens-Leenes ◽  
Markus Berger ◽  
John Anthony Allan

Considering that 4 billion people are living in water-stressed regions and that global water consumption is predicted to increase continuously [...]


Sign in / Sign up

Export Citation Format

Share Document