Water Footprint Evaluation of the Production of Float Flat Glass

2021 ◽  
Vol 1035 ◽  
pp. 1102-1108
Author(s):  
Yi Ling Wu ◽  
Xian Zheng Gong ◽  
Yu Liu ◽  
Xiao Qing Li ◽  
Xiao Fei Tian ◽  
...  

The ISO14046 water footprint evaluation method was used in this study to calculate the water shortage footprint and water degradation footprint in plate glass production, in order to improve the water efficiency and management level in the production process of plate glass in China. A certain enterprise in Hebei province was selected for investigation in 2018. The results show that the water shortage footprint generated by the production of flat glass was 0.435 m3H2Oeq/weight box. The proportion at raw material production stage was the largest, being 86%, so the water consumption control in raw material mining and the circulating water system should be strengthened and improved to reduce the fresh water consumption. Water degradation footprint in flat glass industry mainly consisted of eutrophication and acidification footprints. The eutrophication footprint was calculated as 0.027 kgNO3-eq/weight box, and water acidification footprint was 0.271 kgSO2eq/weight box. The largest proportion occurred at flat glass production stage. It should be paid attention at this stage, to update the relatively clean production equipments and add the waste gas processing steps to reduce pollution discharge.

2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Nurfarhain Mohamed Rusli ◽  
Zainura Zainon Noor ◽  
Shazwin Mat Taib ◽  
Pang Chien Han

The demand for rice in year 2030 is projected to be around 533 million ton of milled rice and known to be a high water consuming crop. In Asia alone, irrigated rice consumes as much as 150 billion m3 of water. With water being the most important component for rice production, yielding more rice with less water is therefore a formidable challenge.  The aim of this study is to assess the water footprint of paddy plantation at Muda Rice Granary, Kedah for five consecutive years; 2012 to 2016. By using the life cycle assessment (LCA) approach, the potential environmental impacts due to water consumption in planting and processing rice will be assessed. By integrating water footprint with LCA may assist in analysing environmental impacts associated with direct and indirect water consumption throughout the whole process; starting from raw material extraction, processing or production, distribution, use, and disposal. The methodological framework follows the LCA framework; setting up goal and specifying the scope of study, followed by inventory analysis, water footprint sustainability assessment and finally interpretation or response formulation. The research boundary for this study include the growing phase of paddy; seedling and cultivating of the paddy until the rice milling process. By implementing this water footprint research in paddy field, it will be essential not only in research area but also in agricultural development in Malaysia. Consequently, it will become the baseline for other agricultural in Malaysia in this research area.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 803
Author(s):  
Winnie Gerbens-Leenes ◽  
Markus Berger ◽  
John Anthony Allan

Considering that 4 billion people are living in water-stressed regions and that global water consumption is predicted to increase continuously [...]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


1972 ◽  
Vol 29 (12) ◽  
pp. 782-785
Author(s):  
K. T. Bondarev ◽  
F. G. Solinov ◽  
O. A. Golozubov
Keyword(s):  

2018 ◽  
Vol 58 (4) ◽  
pp. 695-708 ◽  
Author(s):  
Ya-Yen Sun ◽  
Ching-Mai Hsu

Tourism water consumption reflects the dynamics between the visitation volume, economic structure, and water use technology of a destination. This paper presents a structural decomposition analysis that attributes changes of Taiwan’s tourism water footprint into the demand factors of total consumption and purchasing patterns, and production factors of the industry input structure and water use technology. From 2006 to 2011, Taiwan experienced a 48% growth in visitor expenditures and a 74% surge in its water footprint. Diseconomies of scale were observed, with a 1% increase in consumption leading to a 1.5% increase in the tourism water footprint. A strong preference by visitors for water-intensive goods and services and a changing economic structure requiring more water input for tourism establishments and supply chain members contributed to this worrisome pattern. The water requirements received only a minimal offset effect with technological improvements. Decoupling tourism water consumption from economic output is currently unattainable.


2021 ◽  
Vol 11 (9) ◽  
pp. 4081
Author(s):  
Adrian Czajkowski ◽  
Leszek Remiorz ◽  
Sebastian Pawlak ◽  
Eryk Remiorz ◽  
Jakub Szyguła ◽  
...  

The present paper describes the problem and effects of water scarcity and the possibility of rational use of this resource in the idea of a Circular Economy (CE) and sustainable development. Rational water management requires innovation, due to the growing demand for this raw material. It seems that water is widely available, e.g., in Poland, there is no problem with drought. Unfortunately, Polish water resources are shrinking and modern solutions, as well as the construction of new and modernisation of old infrastructure, are some of the few solutions that can protect against a shortage of potable water. Water is also an essential resource for economic development. It is used in every sector of the economy. Limited water resources lead to an inevitable energy transformation because, in its present state, the Polish energy industry consumes huge amounts of water. Due to the above statements, the authors propose a solution in the form of an interactive shower panel that contributes to more rational water management (e.g., in households or hotels) based on the latest technological achievements. This device enables the creation of water consumption statistics based on accurate liquid flow measurements and the transfer of data to the user’s mobile device. This innovation aims to make the user aware of the amount of water used, which in turn can contribute to lower water consumption.


2018 ◽  
Vol 931 ◽  
pp. 628-633 ◽  
Author(s):  
Sergey V. Fedosov ◽  
Maxim O. Bakanov ◽  
Sergey N. Nikishov

The work considers mathematical models describing thermal processes in the framework of thermal processing of raw material mixture for cellular glass sponging. It is shown that the existing models do not completely reflect the physical processes occurring in the technology of cellular glass production. It is noted that kinetics of cell formation in cellular glass is a promising trend for improving the cellular glass technology.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 819
Author(s):  
Pura Alfonso ◽  
Oriol Tomasa ◽  
Luis Miguel Domenech ◽  
Maite Garcia-Valles ◽  
Salvador Martinez ◽  
...  

Tailings from the Osor fluorite mines release large amounts of potentially toxic elements into the environment. This work is a proposal to remove these waste materials and use them as a raw material in the manufacture of glass. The chemical composition of the tailings was determined by X-ray fluorescence and the mineralogy by X-ray diffraction. Waste materials have SiO2, Al2O3 and CaO contents suitable for a glass production, but Na as NaCO3 has to be added. Two glass formulations, with 80–90% of the residue and 10–20% Na2CO3, have been produced. The crystallization temperatures, obtained by differential thermal analysis, were 875 and 901 °C, and the melting temperatures were 1220 and 1215 °C for the G80-20 and G90-10 glasses, respectively. The transition temperatures of glass were 637 and 628 °C. The crystalline phases formed in the thermal treatment to produce devitrification were nepheline, plagioclase and diopside in the G80-20 glass, and plagioclase and akermanite-gehlenite in the G90-10 glass. The temperatures for the fixed viscosity points, the working temperatures and the coefficient of expansion were obtained. The chemical stability of the glass was tested and results indicate that the potentially toxic elements of the tailings were incorporated into the glass structure.


2019 ◽  
Vol 17 (2) ◽  
pp. 87-99
Author(s):  
Gerd Brantes Angelkorte

The concern with global warming impacts on the environment has made the world population search for new energy sources that are less aggressive to the environment. Therefore, biodiesel has become more relevant and has expanded its proportion in the blend with diesel. However, Brazil still uses about 20% of bovine tallow, which emits large amount of GHG, degrades the soil and entails great water consumption. The purpose of this study was to evaluate the possibilities and effects of the substitution of this nonrenewable source for others of vegetable origin, as well as the environmental effects of increasing the percentage of biodiesel, reaching levels of 20% and 30%. Hence, two types of biodiesel were produced and tested, with and without bovine tallow, and the results obtained and data from the diesel fleet were used to model the impacts and CO2eq emissions with the aid of the MoMo Lite model in Brazil. It was possible to determine the great benefit of adopting higher levels of biodiesel in diesel (especially when there was a substitution of bovine tallow for plant sources), besides the importance of adopting broader analysis of the whole production cycle of the raw material. Since only CO2eq emission data were observed at the burning, the results varied only 10%, but when the results were analyzed through the well-to-tank, this variation rose to 52%.


Memorias ◽  
2018 ◽  
pp. 30-35
Author(s):  
Danny Ibarra Vega Danny Ibarra Vega ◽  
Carlos Peña Rincón ◽  
Johnny Valencia Calvo ◽  
Johan Manuel Redondo ◽  
Gerard Olivar Tost

The biofuels industry has grown and has positioned itself in Colombia for national purposes, these come from biomass sources such as agricultural crops. Bioethanol is the most used in Colombia and is obtained from sugarcane. One of the main concerns of the sector and society, is the high water consumption associated with agricultural crops (9,000 m3 / ha-year), there are currently 232,000 hectares of sugarcane for the production of sugar and bioethanol. Given the aforementioned, the need arises to carry out a planning of industrial increase of the sector taking into account as a main base the demand and availability of water resources for different activities in the Cauca river basin and the demand for sugarcane crops. In this document it is presented a mathematical model and the evaluation of different scenarios of the estimation of the trend of water consumption in the bioethanol production process in Colombia and in this way to establish scenarios of high risk of water shortage both for the population, interested parties and cane cultivation.


Sign in / Sign up

Export Citation Format

Share Document