scholarly journals Solar Concentrators In Malaysia: Towards The Development Of Low Cost Solar Photovoltaic Systems

2012 ◽  
Author(s):  
Firdaus Muhammad Sukki ◽  
Roberto Ramirez Iniguez ◽  
Scott G. Mcmeekin ◽  
Brian G. Stewart ◽  
Barry Clive

Solar energy has become a matter of global attention in the past few years. This paper explores the use and benefit of solar concentrators in the solar photovoltaic (PV) systems. First, a short literature review of previous research on the usage of solar concentrators in improving solar PV system performance and reducing the cost of implementation is presented. This is followed by an overview of SolarBrane, an example of a Building Integrated photovoltaic (BIPV) system which uses an optical concentrator in the solar PV design. An optimised design of the SolarBrane is also discussed afterwards. A financial benefit study is conducted to compare the average return of investment of using the optimised SolarBrane and traditional solar PV installed in Malaysia’s environment. SolarBrane has proven to be a good alternative to achieve costeffective solar PV system. The financial analysis simulated under the new Malaysian Feed–In Tariff scheme indicates that the optimised SolarBrane could potentially reduce the initial cost of implementation by 40% and generate higher return, close to 20%, when compared to traditional solar PV systems. Key words: Solar photovoltaic; solar concentrator; solarBrane; dielectric totally internally reflecting concentrator; financial analysis

Author(s):  
Rakesh Dalal ◽  
Kamal Bansal ◽  
Sapan Thapar

Rooftop solar photovoltaic(PV) installation in India have increased in last decade because of the flat 40 percent subsidy extended for rooftop solar PV systems (3 kWp and below) by the Indian government under the solar rooftop scheme. From the residential building owner's perspective, solar PV is competitive when it can produce electricity at a cost less than or equal grid electricity price, a condition referred as “grid parity”. For assessing grid parity of 3 kWp and 2 kWp residential solar PV system, 15 states capital and 19 major cities were considered  for the RET screen simulation by using solar isolation, utility grid tariff, system cost and other economic parameters. 3 kWp and 2 kWp rooftop solar PV with and without subsidy scenarios were considered for simulation using RETscreen software. We estimate that without subsidy no state could achieve grid parity for 2kWp rooftop solar PV plant. However with 3 kWp rooftop solar PV plant only 5 states could achieve grid parity without subsidy and with government subsidy number of states increased to 7, yet wide spread parity for residential rooftop solar PV is still not achieved. We find that high installation costs, subsidized utility grid supply to low energy consumer and financing rates are major barriers to grid parity.


The need to electrify all rural areas in India is quite compelling. However, the focus has now shifted from traditional fuel-based systems to generate electricity to renewable sources for energy generation. Though there are subsidies and policies that encourage the use of solar Photovoltaic (PV) systems, there is a need for an appropriate framework. This framework could not only offer substantial directions but it would also act as grounds to enhance rural electrification in India using solar PVs. From this perspective, the current research attempts to structure an innovative framework for solar PV system that could facilitate rural electrification in India. In particular, the district of Damoh in Madhya Pradesh was chosen as there are many villages without electricity in this district. PVsyst software was utilized to simulate the outcomes that included mathematical models and diverse components based on PV, for simulation. Three designs were developed to facilitate the simulation. These included; PVs linked with microgrid devoid of battery, individual PV systems without microgrid link and solar PVs linked to microgrid with battey. The framework for rural electrification using solar PVs will offer policy makers with insights with regards to implementing PV systems. It will also offer inputs as to the feasibility of implementing a specific system on several parameters. These would comprise of; number of households within a village, detached households etc. Nonetheless, research in future is also warranted to explore the scope for other sources of renewable energy.


2016 ◽  
Vol 5 (3) ◽  
pp. 179-185 ◽  
Author(s):  
Jeffrey Tamba Dellosa

The Renewable Energy Act of 2008 in the Philippines provided an impetus for residential owners to explore solar PV installations at their own rooftops through the Net-Metering policy. The Net-Metering implementation through the law however presented some concerns with inexperienced electric DU on the potential effect of high residential solar PV system installations. It was not known how a high degree of solar integration to the grid can possibly affect the operations of the electric DU in terms of energy load management. The primary objective of this study was to help the local electric DU in the analysis of the potential effect of high residential solar PV system penetration to the supply and demand load profile in an electric distribution utility (DU) grid in the province of Agusan del Norte, Philippines. The energy consumption profiles in the year 2015 were obtained from the electric DU operating in the area. An average daily energy demand load profile was obtained from 0-hr to the 24th hour of the day based from the figures provided by the electric DU. The assessment part of the potential effect of high solar PV system integration assumed four potential total capacities from 10 Mega Watts (MW) to 40 MW generated by all subscribers in the area under study at a 10 MW interval. The effect of these capacities were measured and analyzed with respect to the average daily load profile of the DU. Results of this study showed that a combined installations beyond 20 MWp coming from all subscribers is not viable for the local electric DU based on their current energy demand or load profile. Based from the results obtained, the electric DU can make better decisions in the management of high capacity penetration of solar PV systems in the future, including investment in storage systems when extra capacities are generated.Article History: Received July 15th 2016; Received in revised form Sept 23rd 2016; Accepted Oct 1st 2016; Available onlineHow to Cite This Article: Dellosa, J. (2016) Potential Effect and Analysis of High Residential Solar Photovoltaic (PV) Systems Penetration to an Electric Distribution Utility (DU). Int. Journal of Renewable Energy Development, 5(3), 179-185.http://dx.doi.org/10.14710/ijred.5.3.179-185


Electronics ◽  
2018 ◽  
Vol 7 (7) ◽  
pp. 119 ◽  
Author(s):  
Muhammad Khan ◽  
Kamran Zeb ◽  
Waqar Uddin ◽  
P. Sathishkumar ◽  
Muhammad Ali ◽  
...  

Environment protection and energy saving are the most attractive trends in zero-carbon buildings. The most promising and environmentally friendly technique is building integrated photovoltaics (BIPV), which can also replace conventional buildings based on non-renewable energy. Despite the recent advances in technology, the cost of BIPV systems is still very high. Hence, reducing the cost is a major challenge. This paper examines and validates the effectiveness of low-cost aluminum (Al) foil as a reflector. The design and the performance of planer-reflector for BIPV systems are analyzed in detail. A Bi-reflector solar PV system (BRPVS) with thin film Al-foil reflector and an LLC converter for a BIPV system is proposed and experimented with a 400-W prototype. A cadmium–sulfide (CdS) photo-resistor sensor and an Arduino-based algorithm was developed to control the working of the reflectors. Furthermore, the effect of Al-foil reflectors on the temperature of PV module has been examined. The developed LLC converter confirmed stable output voltage despite large variation in input voltage proving its effectiveness for the proposed BRPVS. The experimental results of the proposed BRPVS with an Al-reflector of the same size as that of the solar PV module offered an enhancement of 28.47% in the output power.


Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1213 ◽  
Author(s):  
A. Sayed ◽  
M. El-Shimy ◽  
M. El-Metwally ◽  
M. Elshahed

Recently, solar power generation is significantly contributed to growing renewable sources of electricity all over the world. The reliability and availability improvement of solar photovoltaic (PV) systems has become a critical area of interest for researchers. Reliability, availability, and maintainability (RAM) is an engineering tool used to address operational and safety issues of systems. It aims to identify the weakest areas of a system which will improve the overall system reliability. In this paper, RAM analysis of grid-connected solar-PV system is presented. Elaborate RAM analysis of these systems is presented starting from the sub-assembly level to the subsystem level, then the overall system. Further, an improved Reliability Block Diagram is presented to estimate the RAM performance of seven practical grid-connected solar-PV systems. The required input data are obtained from worldwide databases of failures, and repair of various subassemblies comprising various meteorological conditions. A novel approach is also presented in order to estimate the best probability density function for each sub-assembly. The monitoring of the critical subassemblies of a PV system will increase the possibility not only for improving the availability of the system, but also to optimize the maintenance costs. Additionally, it will inform the operators about the status of the various subsystems of the system.


2021 ◽  
Vol 13 (24) ◽  
pp. 13685
Author(s):  
Mariz B. Arias ◽  
Sungwoo Bae

Solar photovoltaic (PV) installation has been continually growing to be utilized in a grid-connected or stand-alone network. However, since the generation of solar PV power is highly variable because of different factors, its accurate forecasting is critical for a reliable integration to the grid and for supplying the load in a stand-alone network. This paper presents a prediction model for calculating solar PV power based on historical data, such as solar PV data, solar irradiance, and weather data, which are stored, managed, and processed using big data tools. The considered variables in calculating the solar PV power include solar irradiance, efficiency of the PV system, and characteristics of the PV system. The solar PV power profiles for each day of January, which is a summer season, were presented to show the variability of the solar PV power in numerical examples. The simulation results show relatively accurate forecasting with 17.57 kW and 2.80% as the best root mean square error and mean relative error, respectively. Thus, the proposed solar PV power prediction model can help power system engineers in generation planning for a grid-connected or stand-alone solar PV system.


Author(s):  
Siti Amely Jumaat ◽  
Adhwa Amsyar Syazwan Ab Majid ◽  
Chin Kim Gan ◽  
Mohd Noor Abdullah ◽  
Nur Hanis Radzi ◽  
...  

This project aims to determine the potential of grid connected solar Photovoltaic (PV) implementation and project planning of solar PV System in school.  Generally, the educational institution used huge amount of electricity to operate so their monthly bills is expensive. Therefore, the project planning is necessary to determine the potential of solar PV system implementation. The project planning consists of the current electricity consumed by the school and the amount of 120W Monocrystalline PV module needed by them. The cost of project are determines to identify the initial cost of this project implementation. Lastly, analysis on the profit collected by SK Pintas Raya after 20 years of solar PV system implementation proved the importance of this project.


2021 ◽  
Vol 335 ◽  
pp. 03002
Author(s):  
Chong Jia Joon ◽  
Kelvin Chew Wai Jin

Solar photovoltaic (PV) panels have been widely used to convert the renewable energy from the sun to electrical energy to power electrical loads but suffers from relatively low efficiency between 15% to 22%. Typically, the panels have an average lifespan of 25 to 30 years but could degrade quicker due to the panel overheating. Beyond the optimum working temperature of 25°C, a drop of efficiency by 0.4 to 0.5% for every 1°C had been reported. For solar PV applications in urban regions, passive cooling is beneficial due to limited amount of space and lower energy consumption compared to active cooling. A solar PV system with augmented cooling was conducted at a balcony of a condominium from 10am until 2pm. The solar PV system consisted of an Arduino controller, solar panel module, temperature sensor and LCD monitor. Reusable cold and hot gel packs were attached to the bottom of the solar PV. Both setups of solar PV panel with and without the cooling system were placed at the balcony simultaneously for measurement of temperature, output voltage and current. From this research, the outcome of implementing a cooling system to the solar PV increases the efficiency of the energy conversion.


2021 ◽  
pp. 1-32
Author(s):  
Mohammad Hamed ◽  
Adnan AlMasri ◽  
Zakariya Dalala ◽  
Raed Alsaleh

Abstract This paper addresses two key decisions by households to adopt rooftop solar PV systems and the length of time until the adoption. It is hypothesized that these decisions are controlled by different mechanisms and should be modelled independently. This is the first attempt to formally estimate the length of time until the adoption to the authors' knowledge. Two models are presented in this paper. The first is a mixed logit to model the respondents' intention to adopt a solar PV system, and the second is a random parameters ordered probit to estimate the length of time until the adoption. Estimation results show that the number of electrical appliances, the households' interest to harness economic benefits, and the type and characteristics of the dwelling motivate households to select a shorter duration until the adoption. Results also show that the majority (77.80%) of respondents with EVs are highly likely to adopt a rooftop system and select a shorter time duration until adoption. In addition, a significant proportion (83.23%) of respondents with high monthly electricity bills are more likely to adopt a rooftop PV system and select a shorter time duration. Results show that the average monthly electricity bill for households with a PV system has decreased by 74.04%. Reducing monthly electricity bills is a key instigator for adopting a rooftop PV system. Our results confirm the hypothesis that even if there is an intent to adopt a rooftop solar PV system, the length of time until the adoption is controlled by another mechanism.


Sign in / Sign up

Export Citation Format

Share Document