scholarly journals Emulsion Liquid Membrane for Cadmium Removal: Experimental Results and Model Prediction

2013 ◽  
Vol 65 (4) ◽  
Author(s):  
A. L. Ahmad ◽  
Adhi Kusumastuti ◽  
M. M. H. Shah Buddin ◽  
D. C. J. Derek ◽  
B. S. Ooi

A study on mass transfer model for cadmium extraction in emulsion liquid membrane system has been done. Mass transfer in the external phase and emulsion globule, stripping reaction, and diffusion of the complex were taken account into the model. Reaction and chemical equilibrium of the process were also considered. The partial differential equation was numerically solved using MATLAB software. Effect of some parameters such as acid concentration in the external phase, extraction speed, volume ratio of emulsion to feed phase, volume ratio of internal to membrane phase, and initial concentration to the extraction process were investigated and compared to the model. The model prediction can agree very well with the concentration profile of cadmium in each phase.

2015 ◽  
Vol 75 (1) ◽  
Author(s):  
A. L. Ahmad ◽  
M. M. H. Shah Buddin ◽  
B. S. Ooi ◽  
Adhi Kusumastuti

The aim of this research is to quantify the occurrence of membrane breakage in vegetable oil based Emulsion Liquid Membrane (ELM). Basically, ELM consists of three main phases; internal, external and membrane. In this work, the membrane phase was prepared by dissolving Span 80 as surfactant and Aliquat 336 as carrier in commercial grade corn oil. As a way to promote sustainable development, vegetable oil which is environmentally benign diluent was incorporated in the formulation of ELM. The influence of several important parameters towards membrane breakage were studied. They are carrier and surfactant concentration, W/O volume ratio, emulsification time, internal phase concentration as well as stirring speed. Based on the data obtained, emulsion prepared using 4 wt% Aliquat 336 and 3 wt% Span 80 resulted in the most stable emulsion with only 0.05% membrane breakage. The emulsion was produced using W/O volume ratio of 1/3 and it was homogenized with the assistance of ultrasound for 15 min. Moreover, emulsion produced able to provide a fair balance between emulsion stability and Cd(II) permeability as it able to remove 98.20% Cd(II) ions from the external phase. 


2011 ◽  
Vol 356-360 ◽  
pp. 1675-1678 ◽  
Author(s):  
Wei Peng ◽  
Chun Jian Xu

Removal of phenol from aqueous solution by a new emulsion liquid membrane (ELM) system and its heat-induced demulsification have been investigated. The ELM consists of commercial kerosene as organic solvent, OP-4 as surfactant agent, hydrochloric acid as the stripping phase. Effect of different operating parameters such as internal phase concentration, surfactant concentration, stirring speed, PH value in external phase, volume ratio of membrane phase to internal phase and volume ratio of membrane phase to external phase were investigated for the removal of phenol from aqueous solution. At the optimum condition about 95.7% phenol is removed in less than 20min of contact time. The demulsification efficiency was investigated under different temperature and time and proved to be high at 80°C.


2019 ◽  
Vol 8 (1) ◽  
pp. 22-27 ◽  
Author(s):  
Adhi Kusumastuti ◽  
Samsudin Anis ◽  
Gunawan Muhammad Najibulloh

Study on the application of Taylor-Couette column for emulsion liquid membrane system has been done. To optimise extraction process under TCC, a research to investigate effect of viscosity and cylinders rotation is of important. Fluid viscosity was examined by varying volume ratio of kerosene to water. TCC was characterised to determine flow regimes, shear stress, and energy loss distribution. Volume ratio of oil to water was varied at 1:1, 1:3, 1:5, and 1:6 while inner and outer cylinders speed were maintained constant at 300 and 200 rpm, respectively. Investigation on the effect of volume ratio of oil to water towards flow regime ended to same flow regime of Featureless Turbulent. There was degradation of wall shear stress from 8.57x10-2 Pa to 7.42x10-2 Pa.


2018 ◽  
Vol 80 (3) ◽  
Author(s):  
Adhi Kusumastuti ◽  
A. L. Ahmad ◽  
Rodia Syamwil ◽  
Samsudin Anis

Although textile dyes is basically available in very low concentration (10-200 ppm); it should be removed due to the toxicity to human body and environment. Among the existing methods, emulsion liquid membrane (ELM) is a promising method by providing high interfacial area and the ability to remove a very low concentration of the solute. The optimal emulsions were produced using commercially supplied homogeniser. Initially, methylene blue in simulated wastewater was extracted using a Taylor-Couette column. Methylene blue concentration was determined using spectrophotometer. Complete extraction was performed in the designed column. The research obtained optimal extraction efficiency of about 99% at external phase pH of 10, carrier concentration of 9 wt. %, HCl concentration of 0.5 M, initial feed concentration of 20 ppm, volume ratio of emulsion to feed phase of 1:5, extraction time of 5 min, and extraction speed of 600 rpm. 


2014 ◽  
Vol 67 (2) ◽  
Author(s):  
Norasikin Othman ◽  
Ooi Zing-Yi ◽  
Norlisa Harruddin ◽  
Raja Norimie ◽  
Norela Jusoh ◽  
...  

Nowadays, water pollution has become major issue especially dye contaminated wastewaters from the textile industry. Dye causes serious environmental pollution and health problems. The removal of color from dye-contaminated wastewaters in the related industries becomes a major concern all over the world. In this research, several parameters of dye extraction and recovery in the continuous emulsion liquid membrane (ELM) process were investigated. This process consisted of three phases which are external (feed) phase, membrane phase and internal phase. The membrane phase was prepared by dissolving extractant bis(2-ethylhexyl)phosphoric acid (D2EHPA) and hydrophobic surfactant sorbitan monooleate (Span 80) in kerosene as diluents. The internal phase consisted of an aqueous solution of sulfuric acid (H2SO4). The important parameters governing the extraction process of dye such as stirring speed, initial dye concentration, Span 80 concentration and treat ratio (volume ratio of emulsion to external phase) were studied. The results showed that the optimum condition for 25ppm initial concentration of dye extraction are 250 rpm stirring speed, 5% (w/v) Span 80 and treat ratio 1:5. At this condition, the percentage of dye extraction, stripping and recovery were 98%, 82% and 81% respectively. Hence, continuous ELM technique is proven to be a very promising technique in industrial wastewater treatment and recovery of dye.


2011 ◽  
Vol 233-235 ◽  
pp. 837-840 ◽  
Author(s):  
Bo Quan Jiang ◽  
Jiang Nan Zeng ◽  
Yu De Liu ◽  
Wen Long Zhang

An effective emulsion liquid membrane system with P507 as carrier, Span-80 as surfactant and H2SO4 as internal aqueous phase was established to treat Ni(Ⅱ)-containing wastewater. The effects of volume fraction of Span-80 in the oil phase(φ(Span-80)), emulsifying stirring speed(ν1), separation stirring speed(ν2), volume fraction of P507(φ(P507)), volume ratio of oil phase to internal phase(Roi), milk phase to water phase(Rew) and concentration of H2SO4 in internal aqueous phase on Ni(Ⅱ) migrating rate have been investigated in the course of migrating of nickel ions in the system. The optimal operation conditions were determined to be: φ(Span-80)=8.5%,ν1 =3600 r·min-1,ν2 =320 r·min-1, φ(P507)=6.5%, Roi =1:1, Rew =2:5 and c(H2SO4)=1.6 mol·L-1 ,under which the migrating rate of nickel ions reached above 97%.


2018 ◽  
Vol 34 (6) ◽  
pp. 2747-2754 ◽  
Author(s):  
Masoud Nasiri Zarandi ◽  
Amirhossein Soltani

The purpose of this study was to investigate the extraction of lead by emulsion liquid membrane as an effective alternative to conventional lead extraction methods. The emulsion included D-2-ethylhexyl phosphoric acid (D2EHPA) as a carrier, paraffin and kerosene composition as an organic solvent, Span 80 as an emulsifier and sulfuric acid as an internal stripping phase. In this project, 7 effective factors in extraction of lead were chosen by emulsion liquid membrane, which included concentration of sulfuric acid in the internal phase, volume ratio of the emulsion to external phase (Rew), the ratio of organic phase to internal phase (Roi), initial pH of external phase, contact time of the emulsion and external phase, carrier concentration and concentration of surfactant in the membrane phase. After the initial experiments to make a stable emulsion, membrane phase mix (70% paraffin and 30% kerosene), homogenizer speed (12000 rpm) and mixer speed (309 rpm) were selected. The final experiments were designed by Taguchi statistical method. Optimization was done according to higher extraction rate and the effect of each of these factors and their optimal values as well as optimal conditions were determined. By verification test, it was shown that more than 92% of lead can be extracted from a solution with a concentration of 2000 ppm.


2016 ◽  
Vol 74 (4) ◽  
pp. 779-786 ◽  
Author(s):  
Juan Qin Xue ◽  
Ni Na Liu ◽  
Guo Ping Li ◽  
Long Tao Dang

To solve the disposal problem of cyanide wastewater, removal of cyanide from wastewater using a water-in-oil emulsion type of emulsion liquid membrane (ELM) was studied in this work. Specifically, the effects of surfactant Span-80, carrier trioctylamine (TOA), stripping agent NaOH solution and the emulsion-to-external-phase-volume ratio on removal of cyanide were investigated. Removal of total cyanide was determined using the silver nitrate titration method. Regression analysis and optimization of the conditions were conducted using the Design-Expert software and response surface methodology (RSM). The actual cyanide removals and the removals predicted using RSM analysis were in close agreement, and the optimal conditions were determined to be as follows: the volume fraction of Span-80, 4% (v/v); the volume fraction of TOA, 4% (v/v); the concentration of NaOH, 1% (w/v); and the emulsion-to-external-phase volume ratio, 1:7. Under the optimum conditions, the removal of total cyanide was 95.07%, and the RSM predicted removal was 94.90%, with a small exception. The treatment of cyanide wastewater using an ELM is an effective technique for application in industry.


Sign in / Sign up

Export Citation Format

Share Document