Removal of Phenol by a New Emulsion Liquid Membrane System and its Heat-Induced Demulsification

2011 ◽  
Vol 356-360 ◽  
pp. 1675-1678 ◽  
Author(s):  
Wei Peng ◽  
Chun Jian Xu

Removal of phenol from aqueous solution by a new emulsion liquid membrane (ELM) system and its heat-induced demulsification have been investigated. The ELM consists of commercial kerosene as organic solvent, OP-4 as surfactant agent, hydrochloric acid as the stripping phase. Effect of different operating parameters such as internal phase concentration, surfactant concentration, stirring speed, PH value in external phase, volume ratio of membrane phase to internal phase and volume ratio of membrane phase to external phase were investigated for the removal of phenol from aqueous solution. At the optimum condition about 95.7% phenol is removed in less than 20min of contact time. The demulsification efficiency was investigated under different temperature and time and proved to be high at 80°C.

2018 ◽  
Vol 34 (6) ◽  
pp. 2747-2754 ◽  
Author(s):  
Masoud Nasiri Zarandi ◽  
Amirhossein Soltani

The purpose of this study was to investigate the extraction of lead by emulsion liquid membrane as an effective alternative to conventional lead extraction methods. The emulsion included D-2-ethylhexyl phosphoric acid (D2EHPA) as a carrier, paraffin and kerosene composition as an organic solvent, Span 80 as an emulsifier and sulfuric acid as an internal stripping phase. In this project, 7 effective factors in extraction of lead were chosen by emulsion liquid membrane, which included concentration of sulfuric acid in the internal phase, volume ratio of the emulsion to external phase (Rew), the ratio of organic phase to internal phase (Roi), initial pH of external phase, contact time of the emulsion and external phase, carrier concentration and concentration of surfactant in the membrane phase. After the initial experiments to make a stable emulsion, membrane phase mix (70% paraffin and 30% kerosene), homogenizer speed (12000 rpm) and mixer speed (309 rpm) were selected. The final experiments were designed by Taguchi statistical method. Optimization was done according to higher extraction rate and the effect of each of these factors and their optimal values as well as optimal conditions were determined. By verification test, it was shown that more than 92% of lead can be extracted from a solution with a concentration of 2000 ppm.


2015 ◽  
Vol 75 (1) ◽  
Author(s):  
A. L. Ahmad ◽  
M. M. H. Shah Buddin ◽  
B. S. Ooi ◽  
Adhi Kusumastuti

The aim of this research is to quantify the occurrence of membrane breakage in vegetable oil based Emulsion Liquid Membrane (ELM). Basically, ELM consists of three main phases; internal, external and membrane. In this work, the membrane phase was prepared by dissolving Span 80 as surfactant and Aliquat 336 as carrier in commercial grade corn oil. As a way to promote sustainable development, vegetable oil which is environmentally benign diluent was incorporated in the formulation of ELM. The influence of several important parameters towards membrane breakage were studied. They are carrier and surfactant concentration, W/O volume ratio, emulsification time, internal phase concentration as well as stirring speed. Based on the data obtained, emulsion prepared using 4 wt% Aliquat 336 and 3 wt% Span 80 resulted in the most stable emulsion with only 0.05% membrane breakage. The emulsion was produced using W/O volume ratio of 1/3 and it was homogenized with the assistance of ultrasound for 15 min. Moreover, emulsion produced able to provide a fair balance between emulsion stability and Cd(II) permeability as it able to remove 98.20% Cd(II) ions from the external phase. 


2014 ◽  
Vol 67 (2) ◽  
Author(s):  
Norasikin Othman ◽  
Ooi Zing-Yi ◽  
Norlisa Harruddin ◽  
Raja Norimie ◽  
Norela Jusoh ◽  
...  

Nowadays, water pollution has become major issue especially dye contaminated wastewaters from the textile industry. Dye causes serious environmental pollution and health problems. The removal of color from dye-contaminated wastewaters in the related industries becomes a major concern all over the world. In this research, several parameters of dye extraction and recovery in the continuous emulsion liquid membrane (ELM) process were investigated. This process consisted of three phases which are external (feed) phase, membrane phase and internal phase. The membrane phase was prepared by dissolving extractant bis(2-ethylhexyl)phosphoric acid (D2EHPA) and hydrophobic surfactant sorbitan monooleate (Span 80) in kerosene as diluents. The internal phase consisted of an aqueous solution of sulfuric acid (H2SO4). The important parameters governing the extraction process of dye such as stirring speed, initial dye concentration, Span 80 concentration and treat ratio (volume ratio of emulsion to external phase) were studied. The results showed that the optimum condition for 25ppm initial concentration of dye extraction are 250 rpm stirring speed, 5% (w/v) Span 80 and treat ratio 1:5. At this condition, the percentage of dye extraction, stripping and recovery were 98%, 82% and 81% respectively. Hence, continuous ELM technique is proven to be a very promising technique in industrial wastewater treatment and recovery of dye.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
A. L. Ahmad ◽  
Adhi Kusumastuti ◽  
M. M. H. Shah Buddin ◽  
D. C. J. Derek ◽  
B. S. Ooi

A study on mass transfer model for cadmium extraction in emulsion liquid membrane system has been done. Mass transfer in the external phase and emulsion globule, stripping reaction, and diffusion of the complex were taken account into the model. Reaction and chemical equilibrium of the process were also considered. The partial differential equation was numerically solved using MATLAB software. Effect of some parameters such as acid concentration in the external phase, extraction speed, volume ratio of emulsion to feed phase, volume ratio of internal to membrane phase, and initial concentration to the extraction process were investigated and compared to the model. The model prediction can agree very well with the concentration profile of cadmium in each phase.


2012 ◽  
Vol 13 (3) ◽  
pp. 269 ◽  
Author(s):  
Baharuddin Hamzah ◽  
Noor Jalaluddin ◽  
Abdul Wahid Wahab ◽  
Ambo Upe

The effects of cadmium(II) and nickel(II) ions to copper(II) extraction using liquid membrane emulsion with 4-benzoyl-3-methyl-1-phenyl-2-pyrazolin-5-on (HPMBP) as an extractant was studied. The optimum condition forcopper(II) extraction were as follows: emulsification rate=2000 rpm, emulsification time=10 minutes, extractionrate=300 rpm, extraction time=15 minutes, concentration of mixed surfactant (span 80+span 20)=3%, volumeratio of membrane phase and internal phase=1:1, concentration of HPMBP=0.020 M, concentration of HCl=1M,volume ratio of emulsion and external phase=1:7. The result showed that the extraction of copper(II) by liquidmembrane emulsion with HPMBP as an extractant was selective to cadmium(II) and nickel(II) ions, relatively. Theresult also showed that in the extraction of 500 mg/l copper(II), the presence of 500 mg/l of nickel(II) was decreasingthe percentage of copper(II) extraction to be 83.73. While, the presence of 500 mg/l of cadmium(II) does notinfluence the percentage extraction of copper(II), relatively.


2010 ◽  
Vol 1 (3) ◽  
pp. 149-156
Author(s):  
Imam Santoso ◽  
Buchari Buchari

Extraction of silver (I) has been studied from black/white printing photographic waste by emulsion liquid membrane technique. Composition emulsion at the membrane phase was cerosene as solvent, sorbitan monooleat (span 80) as surfactant, dimethyldioctadesyl-ammonium bromide as carrier and as internal phase was HNO3. Optimum condition was obtained: ratio of internal phase volume and membrane phase volume was 1:1 : concentration of surfactant was 2% (v/v) : time of making emulsion was 20 second : rate of stiring emulsion was 1100 rpm : rest time emulsion was 3 second : rate of emulsion volume and external phase volume was 1:5 : emulsion contact rate 500 rpm : emulsion contact time was 40 second : concentration of silver thiosulfate as external phase was 100 ppm : pH of external phase was 3 and pH of internal phase was 1. Optimum condition was applied in silver(I) extraction from black/white printing photographic waste. It was obtained 77.33% average which 56.06% silver (I) average of internal phase and 22.66% in the external phase. Effect of matrices ion decreased silver(I) percent extraction from 96,37% average to 77.33% average. Keyword: photographics waste, silver extraction


Author(s):  
M. Rajasimman ◽  
N. Rajamohan ◽  
S. Sujatha

Abstract In this research study, removal of zinc ions from the industrial wastewater was investigated using green emulsion liquid membrane technology. The liquid membrane was prepared by using waste cooking oil along with the surfactant, SPAN 80 and the internal phase, sulfuric acid. The extraction percentage of zinc increased with the increase in concentration of surfactant. The response surface methodology (RSM) analysis identified that the optimal variable values for the maximum extraction of zinc were: external pH – 3.8, surfactant concentration 4% (vol.), internal phase concentration – 1.61N, zinc concentration – 742 mg/L, external phase to emulsion volume ratio – 0.94 and carrier concentration – 8.9%. At the optimized conditions experiment was carried out and the maximum extraction was found to be 97.4%. The perturbation plot shows that the extraction of zinc was affected by variables in the following order of effect: zinc concentration > surfactant concentration > carrier concentration > external pH > external phase to emulsion volume ratio > internal phase concentration.


2018 ◽  
Vol 80 (3) ◽  
Author(s):  
Adhi Kusumastuti ◽  
A. L. Ahmad ◽  
Rodia Syamwil ◽  
Samsudin Anis

Although textile dyes is basically available in very low concentration (10-200 ppm); it should be removed due to the toxicity to human body and environment. Among the existing methods, emulsion liquid membrane (ELM) is a promising method by providing high interfacial area and the ability to remove a very low concentration of the solute. The optimal emulsions were produced using commercially supplied homogeniser. Initially, methylene blue in simulated wastewater was extracted using a Taylor-Couette column. Methylene blue concentration was determined using spectrophotometer. Complete extraction was performed in the designed column. The research obtained optimal extraction efficiency of about 99% at external phase pH of 10, carrier concentration of 9 wt. %, HCl concentration of 0.5 M, initial feed concentration of 20 ppm, volume ratio of emulsion to feed phase of 1:5, extraction time of 5 min, and extraction speed of 600 rpm. 


2021 ◽  
Vol 1021 ◽  
pp. 115-128
Author(s):  
Suheila Abd Alreda Akkar ◽  
Sawsan Abd Muslim Mohammed

This research introduced Intelligent Network's proposed design for predicting efficiency in the removal of phenol from wastewater by liquid membrane emulsion. In the inner phase of W / O emulsions, phenol extraction from an aqueous solution was investigated using emulsion liquid membrane prepared with kerosene as a membrane phase, Span 80 as a surfactant, and NaOH as a stripping agent. Experiments were conducted to investigate the effect of three emulsion composition variables, namely: surfactant concentration, membrane phase to-internal (VM / VI) volume ratio, and removal phase concentration in the internal phase, and two process parameters, feed phase agitation speed at organic acid extraction rates, and emulsion-to-feed volume ratio (VE / VF). More than 98% of phenol can be extracted in less than 5 minutes. This article describes compares the performance of different learning algorithms such as GD, RB, GDM, GDX, CG, and LM to predict the efficiency of phenol removal from wastewater through the liquid emulsion membrane. The proposed neural network consisted of (7, 11, 1) neurons in the input , hidden and output layers respectively feed forward ANN with various types of back propagation training algorithms were developed to model the emulsion liquid membrane removal of phenols. The values predicted for the neural network model are found in close agreement with the results of the batch experiment using MATLAB program with a correlation coefficient ( R2) of 0.999 and Mean Squared Error (MSE) of 0.004.


2019 ◽  
Vol 69 (06) ◽  
pp. 472-477
Author(s):  
QURESHI BRAJA FAHAD ◽  
QURESHI KHADIJA ◽  
KHATRI ZEESHAN ◽  
MALIK SAMANDER ALI ◽  
RAJPUT A. WAQAR ◽  
...  

Extraction of Indigo dye from aqueous solution is studied in this research using Emulsion Liquid Membrane (ELM). Water/Oil (W/O) emulsion was prepared by mixing aqueous phase with organic phase at an elevated homogenizing speed. H2SO4 and Hexane were used as internal stripping agent and organic diluent respectively. Monooleate Sorbitan commonly known as Span-80 was used as surfactant in organic phase. This W/O emulsion was later mixed with external feed phase containing Indigo dye to make W/O/W double emulsion. Stability of the membrane was optimized by experimenting different operating parameters. The ELM prepared under the optimum conditions was finally used to remove Indigo dye from aqueous solution. The parametric study of the process parameters affecting the extraction efficiency was also performed. Under optimum conditions of parameters like volume ratio of emulsion/feed, dye concentration in feed, stirring speed and contact time of two phases, the extraction of Indigo dye was found to be 99%. Therefore, ELM was found to be an attractive and effective technique for the removal of dyes.


Sign in / Sign up

Export Citation Format

Share Document