Characterization of Liquid Pineapple Waste as Carbon Source for Production of Succinic Acid

2014 ◽  
Vol 69 (4) ◽  
Author(s):  
Norela Jusoh ◽  
Norasikin Othman ◽  
Ani Idris ◽  
Alina Nasruddin

Pineapple cannery produces large amount of solid and liquid waste. The disposal of waste without an appropriate treatment can cause a great environmental pollution. Since pineapple waste contains some valuable components such as glucose, fructose and sucrose, the ability to convert this waste into higher value added product such as succinic acid would be advantageous. Therefore, in this study, liquid pineapple waste was characterized in order to investigate the possibility of succinic acid production via fermentation using liquid pineapple waste as a carbon source. The physical and chemical composition in the liquid pineapple waste such as cation, anion, pH, sugar content and soluble protein were determined. The dominant sugar in the liquid pineapple waste were glucose, fructose and sucrose and the total sugar content was more than 100 g/l. Result from the fermentation process proved that liquid pineapple waste can successfully produce succinic acid with almost the same amount as using glucose as carbon source, with the concentration of 6.26 g/l.

REAKTOR ◽  
2008 ◽  
Vol 12 (1) ◽  
pp. 48 ◽  
Author(s):  
Abdullah Abdullah ◽  
Hanafi Mat

The pineapple waste is contain high concentration of biodegradable organic material and suspended solid. As a result it has a high BOD and extremes of pH conditions. The pineapple wastes juice contains mainly sucrose, glucose, fructose and other nutrients. The characterisation this waste is needed to reduce it by  recycling to get raw material or  for  conversion into useful product of higher value added products such as organic acid, methane , ethanol, SCP and enzyme. Analysis of sugar indicates that liquid waste contains mainly sucrose, glucose and fructose.  The dominant sugar was fructose, glucose and sucrose.  The fructose and glucose levels were similar to each other, with fructose usually slightly higher than glucose. The total sugar and citric acid content were 73.76 and 2.18 g/l. The sugar content in solid waste is glucose and fructose was 8.24 and 12.17 %, no sucrose on this waste


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2221
Author(s):  
Adila Fazliyana Aili Hamzah ◽  
Muhammad Hazwan Hamzah ◽  
Hasfalina Che Man ◽  
Nur Syakina Jamali ◽  
Shamsul Izhar Siajam ◽  
...  

Pineapple waste accounts for a significant part of waste accumulated in landfill which will further contribute to the release of greenhouse gases. With the rising pineapple demands worldwide, the abundance of pineapple waste and its disposal techniques are a major concern. Exploiting the pineapple waste into valuable products could be the most sustainable way of managing these residues due to their useful properties and compositions. In this review, we concentrated on producing useful products from on-farm pineapple waste and processing waste. Bioenergy is the most suitable option for green energy to encounter the increasing demand for renewable energy and promotes sustainable development for agricultural waste. The presence of protease enzyme in pineapple waste makes it a suitable raw material for bromelain production. The high cellulose content present in pineapple waste has a potential for the production of cellulose nanocrystals, biodegradable packaging and bio-adsorbent, and can potentially be applied in the polymer, food and textile industries. Other than that, it is also a suitable substrate for the production of wine, vinegar and organic acid due to its high sugar content, especially from the peel wastes. The potentials of bioenergy production through biofuels (bioethanol, biobutanol and biodiesel) and biogas (biomethane and biohydrogen) were also assessed. The commercial use of pineapples is also highlighted. Despite the opportunities, future perspectives and challenges concerning pineapple waste utilisation to value-added goods were also addressed. Pineapple waste conversions have shown to reduce waste generation, and the products derived from the conversion would support the waste-to-wealth concept.


2020 ◽  
Author(s):  
Ashish Prabhu ◽  
Rodrigo Ledesma- Amaro ◽  
Carol Sze Ki Lin ◽  
Frederic Coulon ◽  
Vijay kumar Thakur ◽  
...  

Abstract Background Xylose is a most prevalent sugar available in hemicellulose fraction of lignocellulosic biomass (LCB) and of great interest for the green economy. Unfortunately, most of the cell factories cannot inherently metabolize xylose as sole carbon source. Yarrowia lipolytica is a non-conventional yeast to produce industrially important metabolites, and it is able to metabolize a large variety of substrates including both hydrophilic and hydrophobic carbon sources. However, Y. lipolytica lacks effective metabolic pathway for xylose uptake and only scarce information is available on utilization of xylose. For the economically feasible of LCB-based biorefineries, effective utilization of both pentose and hexose sugars is obligatory. Results In the present study, succinic acid (SA) production from xylose by Y. lipolytica was examined. To this end, Y. lipolytica PSA02004 strain was engineered by overexpressing pentose pathway cassette comprising of xylose reductase ( XR ), xylitol dehydrogenase ( XDH ) and xylulose kinase ( XK ) gene. The recombinant strain exhibited a robust growth on xylose as sole carbon source and accumulated SA (3.8 g/L) with a yield of 0.19 g/g in shake flask studies. Substrate inhibition studies revealed a marked negative impact on cell growth and product formation above 60 g/L xylose concentration. The modelling based on inhibition kinetics revealed that Aiba model showed better fit with experimental data, which resulted the correlation coefficient (R 2 ) of 0.82 and inhibition constant (K I ) 88.9 g/L. The batch cultivation of recombinant strain in bioreactor resulted in a maximum biomass concentration of 7.3 g/L and SA titer of 11.2 g/L with the yield of 0.18 g/g. Similar results in term of cell growth and SA production were obtained with xylose-rich hydrolysate derived from sugarcane bagasse. The fed-batch fermentation yielded biomass concentration of 11.8 g/L (OD 600 : 56.1) and SA titer of 22.3 g/L with a gradual decrease in pH below 4.0. Acetic acid was obtained as a main byproduct in all the fermentations. Conclusion The recombinant strain displayed potential bioconversion of xylose to succinic acid. Further this study provided a new insight on conversion of LCB into value-added products. To the best of our knowledge, this is the first study on SA production by Y. lipolytica using xylose as a sole carbon source.


2019 ◽  
Vol 35 (5) ◽  
Author(s):  
Mariateresa Ferone ◽  
Alessia Ercole ◽  
Francesca Raganati ◽  
Giuseppe Olivieri ◽  
Piero Salatino ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Lei Yang ◽  
Mikkel Møller Henriksen ◽  
Rasmus Syrach Hansen ◽  
Mette Lübeck ◽  
Jesper Vang ◽  
...  

Abstract Background Succinic acid has great potential to be a new bio-based building block for deriving a number of value-added chemicals in industry. Bio-based succinic acid production from renewable biomass can provide a feasible approach to partially alleviate the dependence of global manufacturing on petroleum refinery. To improve the economics of biological processes, we attempted to explore possible solutions with a fungal cell platform. In this study, Aspergillus niger, a well-known industrial production organism for bio-based organic acids, was exploited for its potential for succinic acid production. Results With a ribonucleoprotein (RNP)-based CRISPR–Cas9 system, consecutive genetic manipulations were realized in engineering of the citric acid-producing strain A. niger ATCC 1015. Two genes involved in production of two byproducts, gluconic acid and oxalic acid, were disrupted. In addition, an efficient C4-dicarboxylate transporter and a soluble NADH-dependent fumarate reductase were overexpressed. The resulting strain SAP-3 produced 17 g/L succinic acid while there was no succinic acid detected at a measurable level in the wild-type strain using a synthetic substrate. Furthermore, two cultivation parameters, temperature and pH, were investigated for their effects on succinic acid production. The highest amount of succinic acid was obtained at 35 °C after 3 days, and low culture pH had inhibitory effects on succinic acid production. Two types of renewable biomass were explored as substrates for succinic acid production. After 6 days, the SAP-3 strain was capable of producing 23 g/L and 9 g/L succinic acid from sugar beet molasses and wheat straw hydrolysate, respectively. Conclusions In this study, we have successfully applied the RNP-based CRISPR–Cas9 system in genetic engineering of A. niger and significantly improved the succinic acid production in the engineered strain. The studies on cultivation parameters revealed the impacts of pH and temperature on succinic acid production and the future challenges in strain development. The feasibility of using renewable biomass for succinic acid production by A. niger has been demonstrated with molasses and wheat straw hydrolysate.


2020 ◽  
Author(s):  
Ashish Prabhu ◽  
Rodrigo Ledesma- Amaro ◽  
Carol Sze Ki Lin ◽  
Frederic Coulon ◽  
Vijay kumar Thakur ◽  
...  

Abstract Background : Xylose is a most prevalent sugar available in hemicellulose fraction of lignocellulosic biomass (LCB) and of great interest for the green economy. Unfortunately, most of the cell factories cannot inherently metabolize xylose as sole carbon source. Yarrowia lipolytica is a non-conventional yeast to produce industrially important metabolites. The yeast is able to metabolize a large variety of substrates including both hydrophilic and hydrophobic carbon sources. However, Y. lipolytica lacks effective metabolic pathway for xylose uptake and only scarce information is available on utilization of xylose. For the economically feasibility of LCB-based biorefineries, effective utilization of both pentose and hexose sugars is obligatory. Results : In the present study, succinic acid (SA) production from xylose by Y. lipolytica was examined. To this end, Y. lipolytica PSA02004 strain was engineered by overexpressing pentose pathway cassette comprising of xylose reductase ( XR ), xylitol dehydrogenase ( XDH ) and xylulose kinase ( XK ) gene. The recombinant strain exhibited a robust growth on xylose as sole carbon source and produced substantial amount of SA. The inhibition of cell growth and SA formation was observed above 60 g/L xylose concentration. The batch cultivation of recombinant strain in bioreactor resulted in a maximum biomass concentration of 7.3 g/L and SA titer of 11.2 g/L with the yield of 0.19 g/g. Similar results in term of cell growth and SA production were obtained with xylose-rich hydrolysate derived from sugarcane bagasse. The fed-batch fermentation yielded biomass concentration of 11.8 g/L (OD 600 : 56.1) and SA titer of 22.3 g/L with a gradual decrease in pH below 4.0. Acetic acid was obtained as a main byproduct in all the fermentations. Conclusion : The recombinant strain displayed potential for bioconversion of xylose to SA. Further, this study provided a new insight on conversion of lignocellulosic biomass into value-added products. To the best of our knowledge, this is the first study on SA production by Y. lipolytica using xylose as a sole carbon source.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1834
Author(s):  
Giovanni L. Russo ◽  
Antonio L. Langellotti ◽  
Thierry Blasco ◽  
Maria Oliviero ◽  
Raffaele Sacchi ◽  
...  

Osmotic dehydration is an important phase in the production of dried products, including most fruits and vegetables, in the food industry. The drying process for candied fruit produces a liquid waste called “spent osmotic solution”, which is characterized by a high content of organic compounds, mostly dissolved sugars. The sugar content of this food by-product could be valorized through the growth of biomass with a high added value. In this study, the spent osmotic solution from the candied fruit industry was used as an organic carbon source for the growth and production of docosahexaenoic acid (DHA) in the cultivation of Aurantiochytrium mangrovei RCC893. The carbon content of the standard media was completely replaced by the sugars present in this food by-product. After that, the growth condition of this strain was optimized through response surface methodologies using a central composite design (CCD), and the optimal combination of the spent osmotic solution and nitrogen was established. Moreover, a scale-up trial was performed using the optimal conditions obtained after CCD to evaluate the scalability of the process.


Sign in / Sign up

Export Citation Format

Share Document