scholarly journals Investigation of Systematic Errors for the Hybrid and Panoramic Scanners

2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Mohd Azwan Abbasa ◽  
Halim Setan ◽  
Zulkepli Majid ◽  
Albert K. Chong ◽  
Lau Chong Luh ◽  
...  

The existence of terrestrial laser scanners (TLSs) with capability to provide dense three-dimensional (3D) data in short period of time has made it widely used for the many purposes such as documentation, management and analysis. However, similar to other sensors, data obtained from TLSs also can be impaired by errors coming from different sources. Then, calibration routine is crucial for the TLSs to ensure the quality of the data. Through self-calibration, this study has performed system calibration for hybrid (Leica ScanStation C10) and panoramic (Faro Photon 120) scanner at the laboratory with dimensions 15.5m x 9m x 3m and more than hundred planar targets that were fairly distributed. Four most significant parameters are derived from well-known error sources of geodetic instruments as constant (a0), collimation axis (b0), trunnion axis (b1) and vertical circle index (c0) errors. Data obtained from seven scan-stations were processed, and statistical analysis (e.g. t-test) has shown significant errors for the calibrated scanners.

2014 ◽  
Vol 71 (4) ◽  
Author(s):  
Mohd Azwan Abbas ◽  
Lau Chong Luh ◽  
Halim Setan ◽  
Zulkepli Majid ◽  
Albert K. Chong ◽  
...  

Terrestrial laser scanner (TLS) is a non-contact sensor, optics-based instrument that collects three dimensional (3D) data of a defined region of an object surface automatically and in a systematic pattern with a high data collecting rate. This capability has made TLS widely applied for numerous 3D applications. With the ability to provide dense 3D data, TLS has improved the processing phase in constructing complete 3D model, which is much simpler and faster. Pre-processing is one of the phases involved, which consisted of registration and georeferencing procedures. Due to the many error sources occur in TLS measurement, thus, pre-processing can be considered as very crucial phase to identify any existence of errors and outliers. Any presence of errors in this phase can decrease the quality of TLS final product. With intention to discuss about this issue, this study has performed two experiments, which involved with data collection for land slide monitoring and 3D topography. By implementing both direct and indirect pre-processing method, the outcomes have indicated that TLS is suitable for applications which require centimetre level of accuracy.


Author(s):  
H. Jing ◽  
N. Slatcher ◽  
X. Meng ◽  
G. Hunter

Mobile mapping systems are becoming increasingly popular as they can build 3D models of the environment rapidly by using a laser scanner that is integrated with a navigation system. 3D mobile mapping has been widely used for applications such as 3D city modelling and mapping of the scanned environments. However, accurate mapping relies on not only the scanner’s performance but also on the quality of the navigation results (accuracy and robustness) . This paper discusses the potentials of using 3D mobile mapping systems for landscape change detection, that is traditionally carried out by terrestrial laser scanners that can be accurately geo-referenced at a static location to produce highly accurate dense point clouds. Yet compared to conventional surveying using terrestrial laser scanners, several advantages of mobile mapping systems can be identified. A large area can be monitored in a relatively short period, which enables high repeat frequency monitoring without having to set-up dedicated stations. However, current mobile mapping applications are limited by the quality of navigation results, especially in different environments. The change detection ability of mobile mapping systems is therefore significantly affected by the quality of the navigation results. This paper presents some data collected for the purpose of monitoring from a mobile platform. The datasets are analysed to address current potentials and difficulties. The change detection results are also presented based on the collected dataset. Results indicate the potentials of change detection using a mobile mapping system and suggestions to enhance quality and robustness.


Author(s):  
H. Jing ◽  
N. Slatcher ◽  
X. Meng ◽  
G. Hunter

Mobile mapping systems are becoming increasingly popular as they can build 3D models of the environment rapidly by using a laser scanner that is integrated with a navigation system. 3D mobile mapping has been widely used for applications such as 3D city modelling and mapping of the scanned environments. However, accurate mapping relies on not only the scanner’s performance but also on the quality of the navigation results (accuracy and robustness) . This paper discusses the potentials of using 3D mobile mapping systems for landscape change detection, that is traditionally carried out by terrestrial laser scanners that can be accurately geo-referenced at a static location to produce highly accurate dense point clouds. Yet compared to conventional surveying using terrestrial laser scanners, several advantages of mobile mapping systems can be identified. A large area can be monitored in a relatively short period, which enables high repeat frequency monitoring without having to set-up dedicated stations. However, current mobile mapping applications are limited by the quality of navigation results, especially in different environments. The change detection ability of mobile mapping systems is therefore significantly affected by the quality of the navigation results. This paper presents some data collected for the purpose of monitoring from a mobile platform. The datasets are analysed to address current potentials and difficulties. The change detection results are also presented based on the collected dataset. Results indicate the potentials of change detection using a mobile mapping system and suggestions to enhance quality and robustness.


Author(s):  
R. Voges ◽  
C. S. Wieghardt ◽  
B. Wagner

Motor actuated 2D laser scanners are key sensors for many robotics applications that need wide ranging but low cost 3D data. There exist many approaches on how to build a 3D laser scanner using this technique, but they often lack proper synchronization for the timestamps of the actuator and the laser scanner. However, to transform the measurement points into three-dimensional space an appropriate synchronization is mandatory. Thus, we propose two different approaches to accomplish the goal of calculating timestamp offsets between laser scanner and motor prior to and after data acquisition. Both approaches use parts of a SLAM algorithm but apply different criteria to find an appropriate solution. While the approach for offset calculation prior to data acquisition exploits the fact that the SLAM algorithm should not register motion for a stationary system, the approach for offset calculation after data acquisition evaluates the perceived clarity of a point cloud created by the SLAM algorithm. Our experiments show that both approaches yield the same results although operating independently on different data, which demonstrates that the results reflect reality with a high probability. Furthermore, our experiments exhibit the significance of a proper synchronization between laser scanner and actuator.


Author(s):  
U. Herbig ◽  
I. Mayer ◽  
H. Mortada ◽  
S. Rasztovits

3D Laser scanning technology gained more and more importance for the recording and documentation of architectural heritage. Especially for the survey of heterogeneous surfaces and complex structures it is a fast and reliable option for survey and so appreciated sources for research in architecture. Therefore the integration of laser scanning as a part of the building survey became a kind of standard procedure for objects of different scale, shape, age and origin. <br><br> In some cases more than one team records an object with different devices using altering approaches. For example a client provides existing data from a part of the object that can't be accessed anymore, but is important to be integrated into the overall survey. The merging of the datasets may become challenging, especially if one survey is not documented in detail, in particular when it comes to the quality of the result. <br><br> For a research about the traditional architecture of Saudi Arabia a building in the historic part of Jeddah has been surveyed in detail by a team of researchers of the Vienna University of Technology. Within this frame a workshop for students of the King Abdul Aziz about building archaeological research has been conducted. As part of the results consists of two sets of laserscan data, recorded with different laser scanners. Using these data a possible approach for the registration of scan data from different and/or unknown provenance has been developed which will be outlined in this paper.


Author(s):  
S. Khadpe ◽  
R. Faryniak

The Scanning Electron Microscope (SEM) is an important tool in Thick Film Hybrid Microcircuits Manufacturing because of its large depth of focus and three dimensional capability. This paper discusses some of the important areas in which the SEM is used to monitor process control and component failure modes during the various stages of manufacture of a typical hybrid microcircuit.Figure 1 shows a thick film hybrid microcircuit used in a Motorola Paging Receiver. The circuit consists of thick film resistors and conductors screened and fired on a ceramic (aluminum oxide) substrate. Two integrated circuit dice are bonded to the conductors by means of conductive epoxy and electrical connections from each integrated circuit to the substrate are made by ultrasonically bonding 1 mil aluminum wires from the die pads to appropriate conductor pads on the substrate. In addition to the integrated circuits and the resistors, the circuit includes seven chip capacitors soldered onto the substrate. Some of the important considerations involved in the selection and reliability aspects of the hybrid circuit components are: (a) the quality of the substrate; (b) the surface structure of the thick film conductors; (c) the metallization characteristics of the integrated circuit; and (d) the quality of the wire bond interconnections.


Author(s):  
B. Carragher ◽  
M. Whittaker

Techniques for three-dimensional reconstruction of macromolecular complexes from electron micrographs have been successfully used for many years. These include methods which take advantage of the natural symmetry properties of the structure (for example helical or icosahedral) as well as those that use single axis or other tilting geometries to reconstruct from a set of projection images. These techniques have traditionally relied on a very experienced operator to manually perform the often numerous and time consuming steps required to obtain the final reconstruction. While the guidance and oversight of an experienced and critical operator will always be an essential component of these techniques, recent advances in computer technology, microprocessor controlled microscopes and the availability of high quality CCD cameras have provided the means to automate many of the individual steps.During the acquisition of data automation provides benefits not only in terms of convenience and time saving but also in circumstances where manual procedures limit the quality of the final reconstruction.


1990 ◽  
Vol 18 (4) ◽  
pp. 216-235 ◽  
Author(s):  
J. De Eskinazi ◽  
K. Ishihara ◽  
H. Volk ◽  
T. C. Warholic

Abstract The paper describes the intention of the authors to determine whether it is possible to predict relative belt edge endurance for radial passenger car tires using the finite element method. Three groups of tires with different belt edge configurations were tested on a fleet test in an attempt to validate predictions from the finite element results. A two-dimensional, axisymmetric finite element analysis was first used to determine if the results from such an analysis, with emphasis on the shear deformations between the belts, could be used to predict a relative ranking for belt edge endurance. It is shown that such an analysis can lead to erroneous conclusions. A three-dimensional analysis in which tires are modeled under free rotation and static vertical loading was performed next. This approach resulted in an improvement in the quality of the correlations. The differences in the predicted values of various stress analysis parameters for the three belt edge configurations are studied and their implication on predicting belt edge endurance is discussed.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


Author(s):  
Richard Wigmans

This chapter describes some of the many pitfalls that may be encountered when developing the calorimeter system for a particle physics experiment. Several of the examples chosen for this chapter are based on the author’s own experience. Typically, the performance of a new calorimeter is tested in a particle beam provided by an accelerator. The potential pitfalls encountered in correctly assessing this performance both concern the analysis and the interpretation of the data collected in such tests. The analysis should be carried out with unbiased event samples. Several consequences of violating this principle are illustrated with practical examples. For the interpretation of the results, it is very important to realize that the conditions in a testbeam are fundamentally different than in practice. This has consequences for the meaning of the term “energy resolution”. It is shown that the way in which the results of beam tests are quoted may create a misleading impression of the quality of the tested instrument.


Sign in / Sign up

Export Citation Format

Share Document