ACOUSTIC ABSORPTION, RHEOLOGICAL AND MECHANICAL CHARACTERISTICS OF WASTE EGG BOXES FIBERS FILLED SBR

2015 ◽  
Vol 77 (1) ◽  
Author(s):  
Bashir Algaily ◽  
Sombat Puttajukr ◽  
Thoranit Navarat

There are a few interesting to develop a procedure for design material with high acoustic absorption with broad acoustic frequencies range  and assess the potential of using waste living materials as the primary component in the production of sound absorbing materials for use in walls and ceilings. This research provides experimental investigations for design and optimization of composite sound absorbers with styrene butadiene rubber (SBR) and waste egg boxes (EB) fibers. The SBR/EB composites have been investigated for their acoustic absorption at different frequencies, their mechanical and rheological properties. Results indicated that an increasing EB composition enhanced the acoustic absorption coefficient. The density of SBR/EB composites were directly related to the presence of the EB fibers. The principal experimental evidences of nonlinear behavior of viscoelastic materials were discussed by investigating the stress-strain curve. In view of the rheological properties, the SBR/EB composites showed shear thinning behavior at various different conditions, that the apparent viscosity reduced with increasing shear rates and it was greater temperature sensitivity. Eventually, the data obtained clearly indicated that the heterogeneity and the viscosity of the materials play very important factors to provide suitable absorbers, these new materials were beneficial for using as a sound absorber and could be used as an alternative replacement for conventional product because for instance, they are cheaper, nonabrasive and may serve to reduce the noise pollution.

1997 ◽  
Vol 70 (2) ◽  
pp. 256-263 ◽  
Author(s):  
Yong-Joon Lee ◽  
Lawrence M. France ◽  
Martin C. Hawley

Abstract Styrene-butadiene rubber (SBR) was used to modify asphalt binders. The rheological and thermo-mechanical properties of the binders were investigated using rotational viscometry, dynamic shear rheometry, and thermal mechanical analysis. The optimum SBR content and mixing procedure were determined based on the rheological properties of the asphalt/SBR blends. The addition of 3–5% (w/w) SBR resulted in enhanced high temperature performance of the binders. The SBR progresses from a dispersed polymer to local networks to a global network with increasing SBR content. This phenomenon is exhibited in rheological properties such as complex modulus and melt viscosity. It is also verified visually by using a Laser Scanning Confocal Microscope. Because of this network formation, the binders showed a large increase in the complex modulus which indicates resistance to rutting.


Author(s):  
Kamal K. Kar ◽  
N. L. Ravikumar ◽  
Piyushkumar B. Tailor ◽  
J. Ramkumar ◽  
D. Sathiyamoorthy

The abrasive flow machining (AFM) is used to deburr, radius, polish and remove recast layer of components in a wide range of applications. Material is removed from the workpiece by a flowing semisolid mass across the surface to be finished. In this study a medium for AFM has been developed from the various viscoelastic carriers and has been contrasted through experimental investigation. The viscoelastic media are selected on the basis of existing media through the studies of thermogravimetric analysis and are characterized by mechanical, as well as rheological, properties with the help of a universal testing machine and a rheometer. The performance of the medium is evaluated through the finishing criteria on a two-way AFM setup. The investigation reveals that the styrene butadiene rubber (SBR) medium gives a good improvement in surface finish. The surface improvement through SBR media is 88%. It is also found that the strain, temperature, shear rate, time of applied constant stress, cyclic loading, etc. have an impact on the mechanical and rheological properties of the newly developed medium, which are ultimately governed by the performance of the medium in the target applications.


2011 ◽  
Vol 84 (1) ◽  
pp. 41-54 ◽  
Author(s):  
H. H. Le ◽  
S. Ilisch ◽  
D. Heidenreich ◽  
K. Osswald ◽  
H-J. Radusch

Abstract The present work introduces a new concept based on the analysis of the rubber–filler gel for the determination of the phase selective filler localization in ternary rubber blends. Natural rubber (NR)/styrene–butadiene rubber (SBR)/ethylene–propylene rubber (EPDM) blends filled with silica were the focus of the experimental investigations. Because of the higher wetting rate of the NR component to silica, in the first stage of the preparation of SBR/NR/EPDM blends, more silica is found in the NR phase than in the SBR and EPDM phase. In the subsequent stage, silica is transferred from the NR phase to the SBR phase until the loosely bound NR-layer at the silica surface is fully replaced by SBR molecules. An extremely low amount of silica was found in the EPDM phase because of the poor EPDM–silica interaction. After a long mixing time, a large amount of silica whose surface was not yet wetted by any rubber phase could be found in the composites that can lead to fatal effects on the mechanical performance of the composites.


2013 ◽  
Vol 86 (1) ◽  
pp. 132-145 ◽  
Author(s):  
G. Andreini ◽  
P. Straffi ◽  
S. Cotugno ◽  
G. Gallone ◽  
G. Polacco

ABSTRACT Fatigue crack growth experiments on different carbon black–filled rubber compounds have been carried out to evaluate the influence of pure-shear and strip tensile testing mode by using sine and pulse as waveforms. In a previous set of experimental investigations regarding the influence of both waveform and tested material, it was found that the mode I of crack opening sometimes propagates too quickly to be properly monitored in tests involving strip-tensile specimens. An alternative test methodology based on pure-shear test mode has been investigated, optimizing both the shape of the specimen and the test equipment. Data obtained from the different compound formulations were consistent with the theoretical background and resulted in similar ranking of compound crack growth resistance for the two testing modes; in addition, pure-shear mode showed a higher sensitivity to formula variations.


2018 ◽  
Vol 913 ◽  
pp. 1045-1053 ◽  
Author(s):  
Hao Chen ◽  
Shao Peng Wu ◽  
Gang Liu ◽  
Yong Jie Xue

In this study, three typical tires from bicycles, passenger-cars and trucks were collected and ground into crumb rubber modifiers (CRM) with different particle sizes to modify the asphalt binder. The composition and surface morphology of the three CRMs were analyzed by thermogravimetric analysis (TG-MS) and scanning electron microscopy (SEM). The rheological properties of the binder were evaluated using a dynamic shear rheometer (DSR) and a bending rheometer (BBR). The results show that the main rubber compositions in the bicycle tire (B), the passenger tire (P) and the truck tire (T) are butyl rubber (IIR), styrene-butadiene rubber (SBR) and natural rubber (NR), respectively. Adding CRMs improve rheological properties of base binder. Due to the differences between the composition and the structure, the rheological properties of the P CRM and T CRM containing more SBR and more NR are better at high temperatures and lower temperatures, respectively. And finally the CRM resources and particle size determine the rheological properties of modification effect of base binder. The results can be used to guide the classification and disposal of waste tires. According to the expected modification effect of the asphalt binder, the productions of asphalt pavement construction are enhanced by the high quality products of CRMs.


2019 ◽  
Vol 9 (23) ◽  
pp. 5188 ◽  
Author(s):  
Leslie Mariella Colunga-Sánchez ◽  
Beatriz Adriana Salazar-Cruz ◽  
José Luis Rivera-Armenta ◽  
Ana Beatriz Morales-Cepeda ◽  
Claudia Esmeralda Ramos-Gálvan ◽  
...  

In the present work, the evaluation of chicken feather particles (CFP) and styrene-butadiene/chicken feather (SBS-CF) composites as modifiers for asphalt binder is presented. It is well known that elastomers are the best asphalt modifiers, because their thermoplastic behavior assists asphalts in improving the range of their mechanical properties at both low and high temperatures. Nowadays, the use of natural products and byproducts as fillers for polymer matrices has been a matter of research, and the field of asphalt modification is not the exception. Chicken feather particles (CFP) is a waste material whose main component is keratin, which offers remarkable properties. In the present work, CFP was used as a filler of a styrene-butadiene rubber matrix (SBS) with radial structure, to obtain a composite intended as an asphalt modifier. Besides, raw CFP was also tested as an asphalt modifier. Physical, thermal and rheological properties of the modified asphalts were evaluated in order to determine their degree of modification with respect to the original asphalt. The results show that the addition of raw CFP improves some physical properties as penetration and decreases the phase separation; furthermore, the asphalt modified with CFP displayed similar rheological properties to those shown by the asphalt modified with SBS, while some other properties resulted in being even better, like the phase separation, with the advantage that the CFP comes from a natural waste product.


2016 ◽  
Vol 78 (7-2) ◽  
Author(s):  
Haryati Yaacob ◽  
Moazzam Ali Mughal ◽  
Ramadhansyah Putra Jaya ◽  
Mohd Rosli Hainin ◽  
Dewi Sri Jayanti ◽  
...  

The study investigates the rheological properties of bitumen of 60-70 penetration grade modified with Styrene Butadiene Rubber (SBR). SBR is an elastomer which is an important sort of synthetic rubber. It is a copolymer whose molecular structure primarily consists of organic compound styrene and butadiene chain. Bitumen is visco-elastic in nature. The rate of load application and temperature has a great influence on its performance. Various fundamental properties of bitumen were evaluated, namely complex shear modulus (G*), short-term ageing, long-term ageing, viscosity, penetration and softening point by using Dynamic Shear Rheometer (DSR), Rolling Thin Film Oven Test (RTFOT), Pressure Aging Vessel (PAV), Rotational Viscometer (RV), Penetrometer and Ring and Ball Test, respectively. The binders were mixed with varying percentage of SBR i.e. 0, 1, 2, 3, 4, and 5% by the weight of bitumen binder. The use of SBR has played an active role in improving the viscoelastic properties of bitumen. The use of SBR modifier changes the rheological behavior of bitumen by increasing its complex shear modulus (G*) and the resistance of mixture against permanent deformation (rutting). It was also found that increasing the content of SBR led to the increase in viscosity of modified bitumen, which helps in elevating the mixing and compaction temperature of asphalt mixtures.


Sign in / Sign up

Export Citation Format

Share Document