scholarly journals ALL-DIGITAL PHASE LOCKED LOOP (ADPLL) TOPOLOGIES FOR RFID SYSTEM APPLICATION: A REVIEW

2021 ◽  
Vol 84 (1) ◽  
pp. 219-230
Author(s):  
S. N. Ishak ◽  
J. Sampe ◽  
Z. Yusoff ◽  
M. Faseehuddin

An all-digital phase locked loop (ADPLL)-based local oscillator (LO) of RF transceiver application such as radio-frequency identification (RFID) system has gained popularity by accessing the benefits in complementary metal-oxide semiconductor (CMOS) process technology. This paper reviews some state-of-art of the ADPLL structures based on their applications and analyses its major implementation block, which is the digital-controlled oscillator (DCO). The DCO is evaluated based on its CMOS scaling and its performance in ADPLL, such as the power consumption, the chip area, the frequency range, the supply voltage, and the phase noise. Based on the review, the reduction in CMOS scaling decreases the transistor size in ADPLL design which leads to a smaller area and a low power dissipation. The combination of the time-to-digital (TDC) and the digital-to-time converter (DTC) that is used as the phase-frequency detector (PFD) in ADPLL is proposed to reduce the power and phase noise performance due to their high linearity design. The delay cell oscillator is found to consume more power at higher operating frequency, but it has an advantage of having less complexity and consuming less power and area in the circuit compared to the LC tank oscillator. For future work, it is recommended that an ADPLL-based LO of RFID transceiver with lowest voltage supply implementation is chosen and the use of the TDC-less as the PFD is selected due to its small area. While for the DCO, the delay cell will be designed due to its simpler implementation and occupy small area.

2019 ◽  
Vol 82 (1) ◽  
Author(s):  
Florence Choong ◽  
Mamun Ibne Reaz ◽  
Mohamad Ibrahim Kamaruzzaman ◽  
Md. Torikul Islam Badal ◽  
Araf Farayez ◽  
...  

Digital controlled oscillator (DCO) is becoming an attractive replacement over the voltage control oscillator (VCO) with the advances of digital intensive research on all-digital phase locked-loop (ADPLL) in complementary metal-oxide semiconductor (CMOS) process technology. This paper presents a review of various CMOS DCO schemes implemented in ADPLL and relationship between the DCO parameters with ADPLL performance. The DCO architecture evaluated through its power consumption, speed, chip area, frequency range, supply voltage, portability and resolution. It can be concluded that even though there are various schemes of DCO that have been implemented for ADPLL, the selection of the DCO is frequently based on the ADPLL applications and the complexity of the scheme. The demand for the low power dissipation and high resolution DCO in CMOS technology shall remain a challenging and active area of research for years to come. Thus, this review shall work as a guideline for the researchers who wish to work on all digital PLL.


2021 ◽  
pp. 2140002
Author(s):  
Yanbo Chen ◽  
Shubin Zhang

Phase Locked Loop (PLL) circuit plays an important part in electronic communication system in providing high-frequency clock, recovering the clock from data signal and so on. The performance of PLL affects the whole system. As the frequency of PLL increases, designing a PLL circuit with lower jitter and phase noise becomes a big challenge. To suppress the phase noise, the optimization of Voltage Controlled Oscillator (VCO) is very important. As the power supply voltage degrades, the VCO becomes more sensitive to supply noise. In this work, a three-stage feedforward ring VCO (FRVCO) is designed and analyzed to increase the output frequency. A novel supply-noise sensing (SNS) circuit is proposed to suppress the supply noise’s influence on output frequency. Based on these, a 1.2 V 2 GHz PLL circuit is implemented in 110 nm CMOS process. The phase noise of this CMOS charge pump (CP) PLL is 117 dBc/Hz@1 MHz from test results which proves it works successfully in suppressing phase noise.


Author(s):  
Mateus B. Castro ◽  
Raphael R. N. Souza ◽  
Agord M. P. Junior ◽  
Eduardo R. Lima ◽  
Leandro T. Manera

AbstractThis paper presents the complete design of a phase locked loop-based clock synthesizer for reconfigurable analog-to-digital converters. The synthesizer was implemented in TSMC 65 nm CMOS process technology and the presented results were obtained from extracted layout view with parasitics. The synthesizer generates clock frequencies ranging from 40 to 230 MHz considering a reference frequency of 10 MHz and a supply voltage of 1.2 V. Worst case current consumption is 634 $$\mu $$ μ W, settling time is 6 $$\mu $$ μ s, maximum jitter is 1.3 ns in a 0.037 mm$$^2$$ 2 area. Performance was validated in a test $$\Sigma \Delta $$ Σ Δ Modulator with bandwidths of 200 kHz, 500 kHz and 2 MHz, and oversampling frequencies of 40, 60 and 80 MHz respectively, with negligible signal-to-noise ratio degradation compared to an ideal clock.


2003 ◽  
Vol 765 ◽  
Author(s):  
Daewon Ha ◽  
Qiang Lu ◽  
Hideki Takeuchi ◽  
Tsu-Jae King ◽  
Katsunori Onishi ◽  
...  

AbstractTo facilitate CMOS scaling beyond the 65 nm technology node, high-permittivity gate dielectrics such as HfO2 will be needed in order to achieve sub-1.3nm equivalent oxide thickness (EOT) with suitably low gate leakage, particularly for low-power applications. Polycrystalline silicon-germanium (poly-SiGe) is a promising gate material because it is compatible with a conventional CMOS process flow, and because it can yield significantly lower electrical gate-oxide thickness as compared with poly-Si. In this paper, the effects of the gate material (Si vs. SiGe) and gate deposition rate on EOT and gate leakage current density are investigated. Poly-Si0.75Ge0.25 gate material yields the lowest EOT and is stable up to 950°C for 30 seconds, providing 2 orders of magnitude lower leakage current compared to poly-Si gate material. A faster gate deposition rate (achieved by using S2H6 instead of SiH4 as the gaseous Si source) is also effective for minimizing the increases in EOT and leakage current with high-temperature annealing.


2010 ◽  
Vol 19 (04) ◽  
pp. 835-857 ◽  
Author(s):  
S. M. REZAUL HASAN

This paper presents a scalable low voltage CMOS folded-cascode quadrature voltage controlled oscillator (QVCO) design for radio-frequency (RF) applications using the TSMC 0.18 μm 6M1P CMOS process technology. The simulated startup behavior of this proposed QVCO topology indicates that, the QVCO is free from bi-modal oscillation (frequency ambiguity). The QVCO provided extended voltage swing with the supply voltage scalable in the range of 1.8 V to 0.75 V. The QVCO operates in the frequency range of 4 GHz to 3 GHz (corresponding to supply voltage scaling in the range of 1.8 V to 0.75 V) with around 11.7% tuning range and low quadrature error. The QVCO had a power consumption under 10 mW within the specified supply voltage scaling range. Phase noise simulations using the Monte Carlo analysis provide an approximate phase noise estimate of ≈ -150 dBc/Hz at an offset of 600 KHz from the center frequency (@3.7 GHz) for operation using the 1.8 V supply voltage, using moderate inductor-Q values. Monte Carlo simulations were also carried out to determine the effects of the process, voltage and temperature variations.


Sign in / Sign up

Export Citation Format

Share Document