cmos scaling
Recently Published Documents


TOTAL DOCUMENTS

155
(FIVE YEARS 23)

H-INDEX

21
(FIVE YEARS 3)

2021 ◽  
Vol 84 (1) ◽  
pp. 219-230
Author(s):  
S. N. Ishak ◽  
J. Sampe ◽  
Z. Yusoff ◽  
M. Faseehuddin

An all-digital phase locked loop (ADPLL)-based local oscillator (LO) of RF transceiver application such as radio-frequency identification (RFID) system has gained popularity by accessing the benefits in complementary metal-oxide semiconductor (CMOS) process technology. This paper reviews some state-of-art of the ADPLL structures based on their applications and analyses its major implementation block, which is the digital-controlled oscillator (DCO). The DCO is evaluated based on its CMOS scaling and its performance in ADPLL, such as the power consumption, the chip area, the frequency range, the supply voltage, and the phase noise. Based on the review, the reduction in CMOS scaling decreases the transistor size in ADPLL design which leads to a smaller area and a low power dissipation. The combination of the time-to-digital (TDC) and the digital-to-time converter (DTC) that is used as the phase-frequency detector (PFD) in ADPLL is proposed to reduce the power and phase noise performance due to their high linearity design. The delay cell oscillator is found to consume more power at higher operating frequency, but it has an advantage of having less complexity and consuming less power and area in the circuit compared to the LC tank oscillator. For future work, it is recommended that an ADPLL-based LO of RFID transceiver with lowest voltage supply implementation is chosen and the use of the TDC-less as the PFD is selected due to its small area. While for the DCO, the delay cell will be designed due to its simpler implementation and occupy small area.


2021 ◽  
Author(s):  
Han Han ◽  
Thomas Hantschel ◽  
Pieter Lagrain ◽  
Clement Porret ◽  
Roger Loo ◽  
...  

Abstract The physical limits of CMOS scaling, as predicted by Moore's Law, should have already been reached several years ago. However, the scaling of transistors is still ongoing due to continuous improvements in material quality enabling the fabrication of complex device structures with nm-size dimensions. More than ever, the structural properties and the eventual presence of crystalline defects in the various semiconductor materials (SiGe, III/V) play a critical role. Electron channeling contrast imaging (ECCI) is a powerful defect analysis technique developed in recent years. The technique allows for fast and non-destructive characterizations with the potential for extremely low detection limits. The analysis of lowly defective materials requires measurements over large areas to obtain statistically relevant data. Automated ECCI mapping routines enable the quantification of crystalline defect densities as low as ~1e5 cm-2, e.g., Si0.75Ge0.25 strain relaxed buffers (SRB) epitaxially grown on a Si substrate. Methods to reduce the total measurement time without compromising its sensitivity will be discussed. The measurement routine has also been optimized to detect extended crystalline defects in III/V layers, selectively grown on shallow trench isolation patterned Si wafers. Throughout these examples, this study demonstrates the great potential of ECCI as a versatile and industry-relevant technique for defect analysis.


Micromachines ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 762
Author(s):  
Saurabh Tomar ◽  
Charlotte Lasne ◽  
Sylvain Barraud ◽  
Thomas Ernst ◽  
Carlotta Guiducci

This paper reports a novel miniaturized pseudo reference electrode (RE) design for biasing Ion Sensitive Field Effect Transistors (ISFETs). It eliminates the need for post-CMOS processing and can scale up in numbers with the CMOS scaling. The presented design employs silane-mediated transfer of patterned gold electrode lines onto PDMS microfluidics such that the gold conformally coats the inside of microfluidic channel. Access to this electrode network is made possible by using “through-PDMS-vias” (TPV), which consist of high metal-coated SU-8 pillars manufactured by a novel process that employs a patterned positive resist layer as SU-8 adhesion depressor. When integrated with pneumatic valves, TPV and pseudo-RE network were able to bias 1.5 nanoliters (nL) of isolated electrolyte volumes. We present a detailed characterization of our pseudo-RE design demonstrating ISFET operation and its DC characterization. The stability of pseudo-RE is investigated by measuring open circuit potential (OCP) against a commercial Ag/AgCl reference electrode.


Author(s):  
Chelsey Dorow ◽  
Kevin O'Brien ◽  
Carl H. Naylor ◽  
Sudarat Lee ◽  
Ashish Penumatcha ◽  
...  

2020 ◽  
Vol 67 (12) ◽  
pp. 5349-5354
Author(s):  
Anshul Gupta ◽  
Olalla Varela Pedreira ◽  
Goutham Arutchelvan ◽  
Houman Zahedmanesh ◽  
Katia Devriendt ◽  
...  
Keyword(s):  

2020 ◽  
Vol 34 (22) ◽  
pp. 2050226
Author(s):  
Benqing Guo ◽  
Jing Gong ◽  
Yao Wang ◽  
Jingwei Wu

A CMOS fully differential current-mode front-end for SAW-less receivers is proposed. The noise-canceling LNTA has a main path of the common-gate (CG) stage and an auxiliary path of the inverter stage. A current mirror is used to combine the signals from the main and auxiliary paths in current mode. The stacked nMOS/pMOS configurations improve their power efficiency. The traditional stacked tri-state inverter as D-latch replaced by the discrete inverter and transmission gate enables a reduced supply voltage of divider core. LO generator based on the improved divider provides quarter LO signals to drive the proposed LNTA-shared receiver front-end. Simulation results in 180 nm CMOS indicate that the integrated receiver front-end provides an NF of 2.4 dB, and a maximum gain of 45 dB from 0.2 to 3.3 GHz. The in-band (IB) and out-of-band (OB) IIP3 of 2.5 dBm and 4 dBm, are obtained, respectively. With CMOS scaling down continuously, CMOS devices are providing increased transit frequency and reduced intrinsic parasitics which are important for radio frequency (RF) and millimeter-wave applications. As a promising solution, CMOS RF delivers comparable performance to silicon bipolar and GaAs devices but at a much lower cost and higher integration level. Supply voltage reduction with CMOS scaling down also poses a stringent linearity requirement. Avoiding the conventional trade-off between the supply voltage and linearity headroom, the proposed receiver front-end based on the current mode principle is with weak linearity dependency on the supply voltage and provides excellent anti-blocker interference capability.


Author(s):  
A. Gupta ◽  
H. Mertens ◽  
Z. Tao ◽  
S. Demuynck ◽  
J. Bommels ◽  
...  
Keyword(s):  

2020 ◽  
Vol 184 ◽  
pp. 01025
Author(s):  
Hemlata Dalmia ◽  
Sanjeet K. Sinha

The signal processing is advancing day by day as its needs and in wireline/wireless communication technology from 2G to 4G cellular communication technology with CMOS scaling process. In this context the high-performance ADCs, analog to digital converters have snatched the attention in the field of digital signal processing. The primary emphasis is on low power approaches to circuits, algorithms and architectures that apply to wireless systems. Different techniques are used for reducing power consumption by using low power supply, reduced threshold voltage, scaling of transistors, etc. In this paper, we have discussed the different types and different techniques used for analog to digital conversion of signals considering several parameters.


Sign in / Sign up

Export Citation Format

Share Document