scholarly journals Analysis of soil erosion factors in the river-basin of water tank Šance: confrontation of results of methodologies observing soil erosion

Author(s):  
Marie Palíková ◽  
Aleš Kučera

Soil erosion is still an issue in forestry and in human water-resources activities connected with landscape management and the protection of surface waters. The methods recently assessing the water erosion include: monitoring of suspended sediments in water, monitoring of dynamics of soil pro­per­ties, assessing the inclination of soil towards soil erosion, monitoring of effectiveness of erosion control measures, erosion processes modeling etc. (Buzek, 1981; Buzek, 1983; Holý, 1994; Jařabáč, Belský, 2008).The river basin of the water tank Šance is very important as a source of potable water and this importance is advanced, when water tank is clogged up by suspended sediments.Erosion was assessed by two methods in ArcMap 9.3 working with original data: the first method is Universal equation calculating an average annual soil loss from surface (USLE) (Wischmeier, Smith, cit. in Janeček, 2002); the second method assesses the potential erosion (MPE), using specific soil properties as factors, evaluating the rate of the intensity of erosion (Kučera, Palíková; 2009).Each method uses different ways for the description of the erodibility: USLE describes a long-term average annual soil loss as a consequence of surface erosion. It gives exact values of sediments in t . ha−1 . year−1, but from the other point of view, this method is primarily created for an agricultural land. Compared with USLE, MPE solves potential erosion and gives relative values of the erosion tendency of an environment. PME could give a new point of view on the assessing of the erosion.The river basin Ostravice above water tank Šance was used to compare these two methods. As a control measure, dates of the assessment of the water sediments regime (Buzek, 2001) were used. This observation was pursued in waters of the gagin station ČHMÚ Ostrava in Staré Hamry in according Stehlík (1969). This 25-year process of measuring shows the value of 2.47 t . ha−1 . year−1 in water tank upper Ostravice (with surface 72.96 km2). USLE shows much lower values of suspended sediments (0.41 t . ha−1 . year−1 using a continuous longitude of slopes or 0.11 t . ha−1 . year−1, with regards to the interruption of slopes by the forest roads). This difference is caused by the construction of USLE, which doesn’t respect increased values of sediments after the crossing of fords by the forestry mechanization, rill erosion or inputs of sediments from watercourse and near ravines. Therefore, the high values of suspended sediments are mainly caused by forest management (Buzek, 2001).

Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 952 ◽  
Author(s):  
Devraj Chalise ◽  
Lalit Kumar ◽  
Velibor Spalevic ◽  
Goran Skataric

Soil erosion is a severe environmental problem worldwide as it washes away the fertile topsoil and reduces agricultural production. Nepal, being a hilly country, has significant erosion disputes as well. It is important to cognise the soil erosion processes occurring in a river basin to manage the erosion severity and plan for better soil conservation programs. This paper seeks to calculate the sediment yield and maximum outflow from the Sarada river basin located in the western hills of Nepal using the computer-graphic Intensity of Erosion and Outflow (IntErO) model. Asymmetry coefficient of 0.63 was calculated, which suggests a possibility of large floods to come in the river basin in the future whereas the maximum outflow from the river basin was 1918 m³ s−1. An erosion coefficient value of 0.40 was obtained, which indicates surface erosion of medium strength prevails in the river basin. Similarly, the gross soil loss rate of 10.74 Mg ha−1 year−1 was obtained with the IntErO modeling which compares well with the soil loss from the erosion plot measurements. The IntErO model was used for the very first time to calculate soil erosion rates in the Nepalese hills and has a very good opportunity to be applied in similar river basins.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2786 ◽  
Author(s):  
Safwan Mohammed ◽  
Hazem G. Abdo ◽  
Szilard Szabo ◽  
Quoc Bao Pham ◽  
Imre J. Holb ◽  
...  

Soils in the coastal region of Syria (CRoS) are one of the most fragile components of natural ecosystems. However, they are adversely affected by water erosion processes after extreme land cover modifications such as wildfires or intensive agricultural activities. The main goal of this research was to clarify the dynamic interaction between erosion processes and different ecosystem components (inclination, land cover/land use, and rainy storms) along with the vulnerable territory of the CRoS. Experiments were carried out in five different locations using a total of 15 erosion plots. Soil loss and runoff were quantified in each experimental plot, considering different inclinations and land uses (agricultural land (AG), burnt forest (BF), forest/control plot (F)). Observed runoff and soil loss varied greatly according to both inclination and land cover after 750 mm of rainfall (26 events). In the cultivated areas, the average soil water erosion ranged between 0.14 ± 0.07 and 0.74 ± 0.33 kg/m2; in the BF plots, mean soil erosion ranged between 0.03 ± 0.01 and 0.24 ± 0.10 kg/m2. The lowest amount of erosion was recorded in the F plots where the erosion ranged between 0.1 ± 0.001 and 0.07 ± 0.03 kg/m2. Interestingly, the General Linear Model revealed that all factors (i.e., inclination, rainfall and land use) had a significant (p < 0.001) effect on the soil loss. We concluded that human activities greatly influenced soil erosion rates, being higher in the AG lands, followed by BF and F. Therefore, the current study could be very useful to policymakers and planners for proposing immediate conservation or restoration plans in a less studied area which has been shown to be vulnerable to soil erosion processes.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
D. L. D. Panditharathne ◽  
N. S. Abeysingha ◽  
K. G. S. Nirmanee ◽  
Ananda Mallawatantri

Soil erosion is one of the main forms of land degradation. Erosion contributes to loss of agricultural land productivity and ecological and esthetic values of natural environment, and it impairs the production of safe drinking water and hydroenergy production. Thus, assessment of soil erosion and identifying the lands more prone to erosion are vital for erosion management process. Revised Universal Soil Loss Equation (Rusle) model supported by a GIS system was used to assess the spatial variability of erosion occurring at Kalu Ganga river basin in Sri Lanka. Digital Elevation Model (30 × 30 m), twenty years’ rainfall data measured at 11 rain gauge stations across the basin, land use and soil maps, and published literature were used as inputs to the model. The average annual soil loss in Kalu Ganga river basin varied from 0 to 134 t ha−1 year−1 and mean annual soil loss was estimated at 0.63 t ha−1 year−1. Based on erosion estimates, the basin landscape was divided into four different erosion severity classes: very low, low, moderate, and high. About 1.68% of the areas (4714 ha) in the river basin were identified with moderate to high erosion severity (>5 t ha−1 year−1) class which urgently need measures to control soil erosion. Lands with moderate to high soil erosion classes were mostly found in Bulathsinghala, Kuruwita, and Rathnapura divisional secretarial divisions. Use of the erosion severity information coupled with basin wide individual RUSLE parameters can help to design the appropriate land use management practices and improved management based on the observations to minimize soil erosion in the basin.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 551 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
José María Senciales-González ◽  
Enric Terol ◽  
Gaspar Mora-Navarro ◽  
Yeboah Gyasi-Agyei ◽  
...  

To understand soil erosion processes, it is vital to know how the weather types and atmospheric situations, and their distribution throughout the year, affect the soil erosion rates. This will allow for the development of efficient land management practices to mitigate water-induced soil losses. Vineyards are one of the cultivated areas susceptible to high soil erosion rates. However, there is a lack of studies that link weather types and atmospheric conditions to soil erosion responses in viticultural areas. Thus, the main aim of this research is to assess the impacts of weather types and atmospheric conditions on soil erosion processes in a conventional vineyard with tillage in eastern Spain. To achieve this goal, rainfall events from 2006 to 2017 were monitored and the associated runoff and soil loss were collected from experimental plots. Our results showed that the highest volume of runoff and soil erosion is linked to rainfall associated with the eastern winds that accounted for 59.7% of runoff and 63.9% of soil loss, while cold drops in the atmospheric situation classifications emerged as the highest contributor of 40.9% in runoff and 44.1% in soil loss. This paper provides new insights into the development of soil erosion control measures that help to mitigate the negative impact of extreme rainfall and runoff considering atmospheric conditions.


2020 ◽  
Author(s):  
Roman Výleta ◽  
Viera Rattayová ◽  
Kamila Hlavčová ◽  
Michaela Danáčová ◽  
Andrej Škrinár ◽  
...  

&lt;p&gt;The aim of the study was an integrated application of methods for the identification and complex assessment of ecosystem responses to abiotic stress factors as extreme runoff, muddy floods and soil erosion processes.&amp;#160; The protection of land with flysch geological structures with regard to and the problems caused by extreme runoff are a very important task in water management. The unsuitable management of land and irresponsible land use causes the formation of flash floods on watersheds and results in accelerated soil erosion. The decreasing soil quality and excessive sedimentation of eroded material in the water structures, which are components of flood protection structures, are a consequence of accelerated soil erosion. Research on and the design of measures were realized on five small watersheds in the cadastral area of the village of Vrbovce, which is situated in western Slovakia, on the edge of the flysch zone of the White Carpathians. Flash floods regularly recur in the village of Vrbovce, and extreme runoff causes the formation of rill erosion on the arable land. The soil erosion was modelled by the Universal Soil Loss Equation and the topographic factor was calculated by the Usle2D program. The results of the calculations show that 96.19 % of the agricultural land is endangered by accelerated soil erosion, with the values of the average annual soil loss greater than the limit for the tolerance of soil erosion. We calculated the direct runoff for five selected watersheds of the Teplica river tributaries with the CN-SCS method. The flooded areas in the village were modelled by the 2D hydrodynamic model MIKE21. A set of measures, i.e., polders, an infiltration trench and agrotechnical measures on the arable land, was designed outside the built-up areas of the village of Vrbovce for the reduction of the extreme runoff and accelerated soil erosion. Measures for the Teplica river revitalisation in the village were proposed. From the estimation of effectiveness of the measures proposed follows that we were able to reduce the amount of the soil erosion to values permissible for the norm by the proposed measures.&lt;/p&gt;&lt;p&gt;Key words: soil erosion, flash floods, flood protection, erosion control and river revitalisation practices&lt;/p&gt;


Author(s):  
A. Pandey ◽  
S. K. Mishra ◽  
A. K. Gautam ◽  
D. Kumar

Abstract. In this study, an attempt has been made to assess the soil erosion of a Himalayan river basin, the Karnali basin, Nepal, using rainfall erosivity (R-factor) derived from satellite-based rainfall estimates (TRMM-3B42 V7). Average annual sediment yield was estimated using the well-known Universal Soil Loss Equation (USLE). The eight-year annual average rainfall erosivity factor (R) for the Karnali River basin was found to be 2620.84 MJ mm ha−1 h−1 year−1. Using intensity–erosivity relationships and eight years of the TRMM daily rainfall dataset (1998–2005), average annual soil erosion was also estimated for Karnali River basin. The minimum and maximum values of the rainfall erosivity factor were 1108.7 and 4868.49 MJ mm ha−1 h−1 year−1, respectively, during the assessment period. The average annual soil loss of the Karnali River basin was found to be 38.17 t ha−1 year−1. Finally, the basin area was categorized according to the following scale of erosion severity classes: Slight (0 to 5 t ha−1 year−1), Moderate (5 to 10 t ha−1 year−1), High (10 to 20 t ha−1 year−1), Very High (20 to 40 t ha−1 year−1), Severe (40 to 80 t ha−1 year−1) and Very Severe (>80 t ha−1 year−1). About 30.86% of the river basin area was found to be in the slight erosion class. The areas covered by the moderate, high, very high, severe and very severe erosion potential zones were 13.09%, 6.36%, 11.09%, 22.02% and 16.64% respectively. The study revealed that approximately 69% of the Karnali River basin needs immediate attention from a soil conservation point of view.


Land ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 227
Author(s):  
Yang Yu ◽  
Jesús Rodrigo-Comino

Land degradation, especially soil erosion, is a societal issue that affects vineyards worldwide, but there are no current investigations that inform specifically about soil erosion rates in Chinese vineyards. In this review, we analyze this problem and the need to avoid irreversible damage to soil and their use from a regional point of view. Information about soil erosion in vineyards has often failed to reach farmers, and we can affirm that to this time, soil erosion in Chinese vineyards has been more of a scientific hypothesis than an agronomic or environmental concern. Two hypotheses can be presented to justify this review: (i) there are no official and scientific investigations on vineyard soil erosion in China as the main topic, and it may be understood that stakeholders do not care about this or (ii) there is a significant lack of information and motivation among farmers, policymakers and wineries concerning the consequences of soil erosion. Therefore, this review proposes a plan to study vineyard soil erosion processes for the first time in China and develop a structured scientific proposal considering different techniques and strategies. To achieve these goals, we present a plan considering previous research on other viticultural regions. We hypothesize that the results of a project from a regional geographic point of view would provide the necessary scientific support to facilitate deriving guidelines for sustainable vineyard development in China. We concluded that after completing this review, we cannot affirm why vine plantations have not received the same attention as other crops or land uses.


2020 ◽  
Vol 13 (1) ◽  
pp. 51
Author(s):  
Alexandra Pagáč Mokrá ◽  
Jakub Pagáč ◽  
Zlatica Muchová ◽  
František Petrovič

Water erosion is a phenomenon that significantly damages agricultural land. The current land fragmentation in Slovakia and the complete ambiguity of who owns it leads to a lack of responsibility to care for the land in its current condition, which could affect its sustainability in the future. The reason so much soil has eroded is obvious when looking at current land management, with large fields, a lack of windbreaks between them, and no barriers to prevent soil runoff. Land consolidation might be the solution. This paper seeks to evaluate redistributed land and, based on modeling by the Universal Soil Loss Equation (USLE) method, to assess the degree of soil erosion risk. Ownership data provided information on how many owners and what amount of area to consider, while taking into account new conditions regarding water erosion. The results indicate that 2488 plots of 1607 owners which represent 12% of the model area are still endangered by water erosion, even after the completion of the land consolidation project. The results also presented a way of evaluating the territory and aims to trigger a discussion regarding an unambiguous definition of responsibility in the relationship between owner and user.


2021 ◽  
Vol 11 (15) ◽  
pp. 6763
Author(s):  
Mongi Ben Zaied ◽  
Seifeddine Jomaa ◽  
Mohamed Ouessar

Soil erosion remains one of the principal environmental problems in arid regions. This study aims to assess and quantify the variability of soil erosion in the Koutine catchment using the RUSLE (Revised Universal Soil Loss Equation) model. The Koutine catchment is located in an arid area in southeastern Tunisia and is characterized by an annual mean precipitation of less than 200 mm. The model was used to examine the influence of topography, extreme rainstorm intensity and soil texture on soil loss. The data used for model validation were obtained from field measurements by monitoring deposited sediment in settlement basins of 25 cisterns (a traditional water harvesting and storage technique) over 4 years, from 2015 to 2018. Results showed that slope is the most controlling factor of soil loss. The average annual soil loss in monitoring sites varies between 0.01 and 12.5 t/ha/y. The storm events inducing the largest soil losses occurred in the upstream part of the Koutine catchment with a maximum value of 7.3 t/ha per event. Soil erosion is highly affected by initial and preceding soil conditions. The RUSLE model reasonably reproduced (R2 = 0.81) the spatiotemporal variability of measured soil losses in the study catchment during the observation period. This study revealed the importance of using the cisterns in the data-scarce dry areas as a substitute for the classic soil erosion monitoring fields. Besides, combining modeling of outputs and field measurements could improve our physical understanding of soil erosion processes and their controlling factors in an arid catchment. The study results are beneficial for decision-makers to evaluate the existing soil conservation and water management plans, which can be further adjusted using appropriate soil erosion mitigation options based on scientific evidence.


2021 ◽  
Author(s):  
Ivan Dugan ◽  
Leon Josip Telak ◽  
Iva Hrelja ◽  
Ivica Kisić ◽  
Igor Bogunović

&lt;p&gt;&lt;strong&gt;Straw mulch impact on soil properties and initial soil erosion processes in the maize field&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Ivan Dugan*, Leon Josip Telak, Iva Hrelja, Ivica Kisic, Igor Bogunovic&lt;/p&gt;&lt;p&gt;University of Zagreb, Faculty of Agriculture, Department of General Agronomy, Zagreb, Croatia&lt;/p&gt;&lt;p&gt;(*correspondence to Ivan Dugan: [email protected])&lt;/p&gt;&lt;p&gt;Soil erosion by water is the most important cause of land degradation. Previous studies reveal high soil loss in conventionally managed croplands, with recorded soil losses high as 30 t ha&lt;sup&gt;-1&lt;/sup&gt; under wide row cover crop like maize (Kisic et al., 2017; Bogunovic et al., 2018). Therefore, it is necessary to test environmentally-friendly soil conservation practices to mitigate soil erosion. This research aims to define the impacts of mulch and bare soil on soil water erosion in the maize (Zea mays&amp;#160;L.) field in Blagorodovac, Croatia (45&amp;#176;33&amp;#8217;N; 17&amp;#176;01&amp;#8217;E; 132 m a.s.l.). For this research, two treatments on conventionally tilled silty clay loam Stagnosols were established, one was straw mulch (2 t ha&lt;sup&gt;-1&lt;/sup&gt;), while other was bare soil. For purpose of research, ten rainfall simulations and ten sampling points were conducted per each treatment. Simulations were carried out with a rainfall simulator, simulating a rainfall at an intensity of 58 mm h&lt;sup&gt;-1&lt;/sup&gt;, for 30 min, over 0.785 m&lt;sup&gt;2&lt;/sup&gt; plots, to determine runoff and sediment loss. Soil core samples and undisturbed samples were taken in the close vicinity of each plot. The results showed that straw mulch mitigated water runoff (by 192%), sediment loss (by 288%), and sediment concentration (by 560%) in addition to bare treatment. The bare treatment showed a 55% lower infiltration rate. Ponding time was higher (p &lt; 0.05) on mulched plots (102 sec), compared to bare (35 sec), despite the fact that bulk density, water-stable aggregates, water holding capacity, and mean weight diameter did not show any difference (p &gt; 0.05) between treatments. The study results indicate that straw mulch mitigates soil water erosion, because it immediately reduces runoff, and enhances infiltration. On the other side, soil water erosion on bare soil under simulated rainstorms could be high as 5.07 t ha&lt;sup&gt;-1&lt;/sup&gt;, when extrapolated, reached as high as 5.07 t ha&lt;sup&gt;-1 &lt;/sup&gt;in this study. The conventional tillage, without residue cover, was proven as unsustainable agro-technical practice in the study area.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Key words: straw mulch, &lt;/strong&gt;rainfall simulation, soil water erosion&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Acknowledgment&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;This work was supported by Croatian Science Foundation through the project &quot;Soil erosion and degradation in Croatia&quot; (UIP-2017-05-7834) (SEDCRO).&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Literature&lt;/strong&gt;&lt;/p&gt;&lt;p&gt;Bogunovic, I., Pereira, P., Kisic, I., Sajko, K., Sraka, M. (2018). Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia). Catena, 160, 376-384.&lt;/p&gt;&lt;p&gt;Kisic, I., Bogunovic, I., Birk&amp;#225;s, M., Jurisic, A., Spalevic, V. (2017). The role of tillage and crops on a soil loss of an arable Stagnic Luvisol. Archives of Agronomy and Soil Science, 63(3), 403-413.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document