scholarly journals Changes of engine oil flow properties during its life cycle

Author(s):  
Libor Severa ◽  
Miroslav Havlíček ◽  
Jiří Čupera

The work is focused on quantification of influence of operation on flow properties of motorcycle engine oil. Three different kinds of synthetic engine oil (MOTUL) were tested, namely unused oil, run-in oil (650 km after engine reboring) and regular engine oil (6200 km of motorcycle operation). The samples were frozen to below zero temperatures and kinematic viscosity was continuously monitored in the range of −5 °C and +115 °C. Consequently, the kinematic viscosity at reference temperatures of 0, 40 and 100 °C was compared. Viscosity was measured by digital viscometer with concentric cylinders measuring geometry. The biggest difference occurred in case of lower temperatures where e.g. at 0 °C decrease to 29 % and 43 % of its original value was detected for used oil and run-in oil respectively. Flow behavior was modeled using several mathematical models –Arrhenius equation, exponential, and Gaussian equation. The best match between experimental and computed data was received in case of Gaussian fit with R2 = 0.997 and 0.992 for run-in and used oil, respectively. The models are ge­ne­ral­ly usable for description of rheological behavior of given engine oil.

2019 ◽  
Vol 8 (4) ◽  
pp. 6383-6388

The aim of this research is to investigate the usage of passenger car engine oil into a motorcycle engine by determining the after effect of the lubricant to the engine. The difference between engine oil of passenger car and motorcycle is the friction modifier that is in the formulation of cars engine lubricant. A motorcycle engine has a wet clutch system in the crank case, such engine oil with a friction modifier will decrease the clutch capacity of the system. In this study, three types of methodology tests have been conducted such as endurance test which combined with the fuel efficiency test at the same time, drag test and Ferrography tests that were conducted to determine the amount of contamination in both types of engine oil. The results showed that using a passenger car lubricant on motorcycle engine did not affect the engine compartment and parts. The numbers of metal wear in the used oil of both types of cars and motorcycle were slightly different.


Author(s):  
Zurriye Yilmaz ◽  
Mehmet Dogan ◽  
Mahir Alkan ◽  
Serap Dogan

In the food industry, rheological properties, such as viscosity, shear rate, and shear stress, are the most important parameters required in the design of a technological process. Therefore, in this study, we determined the flow behavior and the time-dependent flow properties of Turkish Delight (TD) in the temperature range of 25-75°C using a capillar rheometer. The structure and thermal properties of TD were investigated by XRD and a simultaneous DTA/TG analysis. The shear rate values ranged from 5 to 300s-1. We found that: (i) TD behaved as non- Newtonian pseudoplastic foodstuff; (ii) while the measurement temperature increased, viscosity decreased; and (iii) TD was a rheopectic material. The effect of temperature on viscosity was described by means of the Arrhenius equation. The activation energies for the flow of pseudoplastic TD varied from 50.1-74.2 kJ/mol, depending on shear rate. Three models were used to predict the flow behavior of TD, namely, the Power law, Bingham and Casson models. The Power law model adequately described well the flow behavior of TD at different temperatures.


2020 ◽  
Vol 10 (6) ◽  
pp. 7120-7134

The purpose of this study is to investigate the rheological properties of sumac extract in different concentrations at different temperatures as well as its flow behavior in sudden expansion-contraction and at 90o elbow with CFD. The rheological behaviour of sumac extract in different concentrations (45.65%, 50.44%, 55.53%, 60.32%, and 65.13% total solids) were evaluated using a rotational viscometer at different temperatures (10, 20, 30, 40 and 50 C). Sumac extract samples showed Newtonian flow properties in these temperature ranges. Arrhenius equation was used to determine the effect of temperature. Ea value varied in the range of 11.16-34.35 kJ/mol, which diminished with a decrease in concentration. Power and Exponential models were used to characterize the effect of concentration on flow behavior. Time average velocity vector and contours, vorticity contours, kinetic energy contours, and pressure contours are given to show the flow behavior of sumac extract.


Author(s):  
Libor Severa ◽  
Miroslav Havlíček ◽  
Vojtěch Kumbár

The objective of this study is to measure how the viscosity of engine oil changes with temperature. Six different commercially distributed engine oils (primarily intended for motorcycle engines) of 10W–40 viscosity grade have been evaluated. Four of the oils were of synthetic type, two of semi–synthetic type. All oils have been assumed to be Newtonian fluids, thus flow curves have not been determined. Oils have been cooled to below zero temperatures and under controlled temperature regulation, kinematic viscosity (mm2 / s) have been measured in the range of −5 °C and +115 °C. Anton Paar digital viscometer with concentric cylinders geometry has been used. In accordance with expected behavior, kinematic viscosity of all oils was decreasing with increasing temperature. Viscosity was found to be independent on oil’s density. Temperature dependence has been modeled using se­ve­ral mathematical models – Vogel equation, Arrhenius equation, polynomial, and Gaussian equation. The best match between experimental and computed data has been achieved for Gaussian equation (R2 = 0.9993). Knowledge of viscosity behavior of an engine oil as a function of its temperature is of great importance, especially when considering running efficiency and performance of combustion engines. Proposed models can be used for description and prediction of rheological behavior of engine oils.


2021 ◽  
Vol 35 (06) ◽  
pp. 2150102
Author(s):  
Ikram Ullah ◽  
Tasawar Hayat ◽  
Ahmed Alsaedi ◽  
Habib M. Fardoun

Present attempt inspects the entropy analysis and melting effect in flow of hybrid nanomaterials consisting of CNTs nanoparticles and engine oil Flow is by a stretching cylinder. Formulation is accountable to the viscous dissipation, velocity slip and thermal radiation impacts. In order to estimate the disorder within the thermo-physical frame, second-order analysis has been used. The governing system with the imposed boundary condition is dimensionless via proper variables. Numerical outcomes are expressed graphically and analyzed. Comparison of hybrid nanomaterial, nanomaterials and regular liquid is expressed graphically. Outcomes indicate that the hybrid nanomaterials have great impact throughout the inspection than the ordinary nanomaterials.


Author(s):  
Vinod Dhaygude ◽  
Anita Soós ◽  
Réka Juhász ◽  
László Somogyi
Keyword(s):  

Author(s):  
Martin Berthold ◽  
Hervé Morvan ◽  
Richard Jefferson-Loveday ◽  
Benjamin C. Rothwell ◽  
Colin Young

High loads and bearing life requirements make journal bearings a potential choice for use in high power, epicyclic gearboxes in jet engines. Particularly in a planetary configuration the kinematic conditions are complex. With the planet gears rotating about their own axis and orbiting around the sun gear, centrifugal forces generated by both motions interact with each other and affect the external flow behavior of the oil exiting the journal bearing. Computational Fluid Dynamics (CFD) simulations using the Volume of Fluid (VoF) method are carried out in ANSYS Fluent [1] to numerically model the two-phase flow behavior of the oil exiting the bearing and merging into the air surrounding the bearing. This paper presents an investigation of two numerical schemes that are available in ANSYS Fluent to track or capture the air-oil phase interface: the geometric reconstruction scheme and the compressive scheme. Both numerical schemes are used to model the oil outflow behavior in the most simplistic approximation of a journal bearing: a representation, rotating about its own axis, with a circumferentially constant, i.e. concentric, lubricating gap. Based on these simplifications, a three dimensional (3D) CFD sector model with rotationally periodic boundaries is considered. A comparison of the geometric reconstruction scheme and the compressive scheme is presented with regards to the accuracy of the phase interface reconstruction and the time required to reach steady state flow field conditions. The CFD predictions are validated against existing literature data with respect to the flow regime, the direction of the predicted oil flow path and the oil film thickness. Based on the findings and considerations of industrial requirements, a recommendation is made for the most suitable scheme to be used. With a robust and partially validated CFD model in place, the model fidelity can be enhanced to include journal bearing eccentricity. Due to the convergent-divergent gap and the resultant pressure field within the lubricating oil film, the outflow behavior can be expected to be very different compared to that of a concentric journal bearing. Naturally, the inlet boundary conditions for the oil emerging from the journal bearing into the external environment must be consistent with the outlet conditions from the bearing. The second part of this paper therefore focuses on providing a method to generate appropriate inlet boundary conditions for external oil flow from an eccentric journal bearing.


Author(s):  
Martin Berthold ◽  
Hervé Morvan ◽  
Colin Young ◽  
Richard Jefferson-Loveday

High loads and bearing life requirements make journal bearings the preferred choice for use in high power, epicyclic gearboxes in jet engines. In contrast to conventional, non-orbiting journal bearings in epicyclic star gearboxes, the kinematic conditions in epicyclic planetary arrangements are much more complex. With the planet gears rotating about their own axis and orbiting around the sun gear, centrifugal forces generated by both motions interact with each other and affect the external flow behavior of the oil exiting the journal bearing. This paper presents a literature and state-of-the-art knowledge review to identify existing work performed on cases similar to external journal bearing oil flow. In order to numerically investigate external journal bearing oil flow, an approach to decompose an actual journal bearing into simplified models is proposed. Later, these can be extended in a step-wise manner to allow key underlying physical phenomena to be identified. Preliminary modeling considerations will also be presented. This includes assessing different geometrical inlet conditions with the aim of minimizing computational requirements and different numerical models for near-wall treatment. The correct choice of near-wall treatment models is particularly crucial as it determines the bearing’s internal and external thermal behavior and properties. The findings and conclusions are used to create a three dimensional (3D), two-component computational fluid dynamic (CFD) sector model with rotationally periodic boundaries of the most simplistic approximation of an actual journal bearing: a non-orbiting representation, rotating about its own axis, with a circumferentially constant, i.e. concentric, lubricating gap. The inlet boundary conditions for simulating the external oil flow are generated by partly simulating the internal oil flow within the lubricating gap. In order to track the phase interface between the oil and the air surrounding the bearing, the Volume of Fluid (VoF) method is used. The quality of the CFD simulations of the domain of interest is not only dependent on the accuracy of the inlet conditions, but is also dependent on the computational mesh type, cell count, cell shape and numerical methods used. External journal bearing oil flow was simulated with a number of different mesh densities and the effect on the flow field behavior will be discussed. Two different operating temperatures, representing low and high viscosity oil, were used and their effect on the flow field behavior will also be assessed. In order to achieve the future objective of creating a design tool for routine use, key areas will be identified in which further progress is required. This includes the need to progressively increase the model fidelity to eventually simulate an orbiting journal bearing in planetary configuration with an eccentric, i.e. convergent-divergent, lubricating gap.


Sign in / Sign up

Export Citation Format

Share Document