scholarly journals Effect of Pressure on the Uniformity of Nozzles Transverse Distribution and Mathematical Model Development

Author(s):  
Vladimir Višacki ◽  
Aleksandar Sedlar ◽  
Rajko Bugarin ◽  
Jan Turan ◽  
Patrik Burg

Timely and high-quality application of pesticides contributes to environmental protection, economical production and production of healthy food. The efficacy of pesticide application depends not only on the quality of pesticides but also the quality of the application. One of the factor that most influences the quality of applications, from the standpoint of mechanization, are nozzles. They working liquid applied on the surface the plant resulting in the same volume of pesticide is applied to the entire surface of the plants. To achieve this goal, nozzles must be performed uniform application of working liquid per unit area, or tractor sprayer working width. The variable factor in the application of pesticides may be nozzle and operating pressure. With increasing working pressure obtained smaller droplets. The paper presents test of three different nozzles. Each nozzle is characterized by a flat jet with an angle of 110° and a flow rate of 1.6 l∙min−1 at a pressure of 3 bar. Differ from each other are by the way of disintegration of the jet. Exactly this characteristic causes that with pressure change coming to changes in the uniformity of nozzles transverse distribution. So the best distribution has nozzle with a flat jet. The coefficient of variation is between roughly from 4 to 6 % at the pressure application of 2 to 4 bar. Obtained mathematical model that describes changes in the coefficient of variation depending on pressure applications can be a good basis for easy harmonization parameters in the pesticide application.

2019 ◽  
Vol 86 ◽  
Author(s):  
Alcides Marangoni Junior ◽  
Marcelo da Costa Ferreira

ABSTRACT Manual backpack sprayers are widely used in rural properties in Brazil. However, studies that assess their working characteristics, especially spray tip models and working pressure conditions, are scarce. Thus, the aim of this study was to assess how much the working pressure and spray tips influence the distribution quality of phytosanitary spray solutions in manual backpack sprayers. Four spray nozzles (standard flat-fan Magnojet TP11002, turbo flat-fan TeeJet TT11002, hollow-cone TeeJet TXA8002, and disc-core) were assessed in a patternator table at 1, 2, 3, and 4 bar. Analyses of spray distribution profile were performed by symmetry and the coefficient of variation (CV) analysed by the Tukey’s test (p < 0.05). Spray tip models and working pressure influenced in more than 100% the distribution uniformity values of spray solution and in about 50% the useful range of the phytosanitary treatment. Among the models assessed in this study, the turbo flat-fan spray nozzle presents the best set of characteristics to be indicated for manual backpack sprayers aiming at field phytosanitary treatments.


Author(s):  
I. I. Kravchenko

The paper considers the mathematical model development technique to build a vector field of the shape deviations when machining flat surfaces of shell parts on multi-operational machines under conditions of anisotropic rigidity in technological system (TS). The technological system has an anisotropic rigidity, as its elastic strains do not obey the accepted concepts, i.e. the rigidity towards the coordinate axes of the machine is the same, and they occur only towards the external force. The record shows that the diagrams of elastic strains of machine units are substantially different from the circumference. The issues to ensure the specified accuracy require that there should be mathematical models describing kinematic models and physical processes of mechanical machining under conditions of the specific TS. There are such models for external and internal surfaces of rotation [2,3], which are successfully implemented in practice. Flat surfaces (FS) of shell parts (SP) are both assembly and processing datum surfaces. Therefore, on them special stipulations are made regarding deviations of shape and mutual arrangement. The axes of the main bearing holes are coordinated with respect to them. The joints that ensure leak tightness and distributed load on the product part are closed on these surfaces. The paper deals with the analytical construction of the vector field F, which describes with appropriate approximation the real surface obtained as a result of modeling the process of machining flat surfaces (MFS) through face milling under conditions of anisotropic properties.


2020 ◽  
pp. 12-18
Author(s):  
F.A. Urazbahtin ◽  
A.YU. Urazbahtina

A multifactor mathematical model of the welding process of products from aluminum-magnesium alloys, consisting of 71 indicators that assess the quality of the weld, the welding process, costs, equipment operation and quality of the welded material. The model can be used to control and optimize the welding process of products from aluminum-magnesium alloys. Keywords welding, products, aluminum-magnesium alloy, indicators, process parameters, welding equipment, welding materials, electrode sharpening, lining [email protected]


2004 ◽  
Vol 4 (5-6) ◽  
pp. 383-388
Author(s):  
D.M. Rogers

Water is a fundamental necessity of life. Yet water supply and distribution networks the world over are old and lacking in adequate maintenance. Consequently they often leak as much water as they deliver and provide an unacceptable quality of service to the customer. In certain parts of the world, water is available only for a few hours of the day. The solution is to build a mathematical model to simulate the operation of the real network in all of its key elements and apply it to optimise its operation. To be of value, the results of the model must be compared with field data. This process is known as calibration and is an essential element in the construction of an accurate model. This paper outlines the optimum approach to building and calibrating a mathematical model and how it can be applied to automatic calibration systems.


2013 ◽  
Vol 652-654 ◽  
pp. 2450-2454
Author(s):  
Zhi Hong Zhang ◽  
Guo Guang Cheng

The paper describes multi-section round bloom casting using external MEMS, equipped with max section D600mm and min D280mm mold, the center line of D280mm mold not coincident with the axis of stirrer coils. it is exist eccentric electromagnetic stirring of mold which section less than max D600mm, a mathematical model of MEMS has been established, the index of central segregation of D280mm macrostructure had decreased less than 1.12 by optimized parameters of electromagnetic stirring and SEN immerse depth, in the end, the quality of round bloom had improved.


2021 ◽  
Author(s):  
David Salinas Sanchez ◽  
Mario Noguez Lugo ◽  
Oscar Zamora Torres ◽  
Cuauhtemoc Cruz Castillo ◽  
Moises Muñoz Rivera ◽  
...  

Abstract A 7-in. liner was successfully cemented in the south east region of Mexico at 7530 m MD despite significant pressure and temperature challenges. The entire 1,370-m, 8.5" open hole section needed cement coverage and isolation to test several intervals. The challenge of the ultranarrow working pressure window was overcome by using managed pressure cementing (MPC) along with lost circulation solutions for the cement slurry and spacer. Due to the narrow pressure window (0.05 g/cc density gradient), mud losses could not be avoided during the cementing job. To limit and manage losses, an MPC placement technique was proposed, in conjunction with using lost circulation fiber technology in the cement slurry and spacer. After addressing the losses and narrow working pressure window, the next main challenge was the extremely high temperature (Bottom hole static temperature of 171°C). Extensive lab testing provided the fluid solution: HT formulations for cement slurry and spacer to maintain stability and rheology for placement and management of equivalent circulating density and set cement properties for long-term zonal isolation. After the liner was run to bottom, the mud density was homogenized from 1.40 g/cc to 1.30 g/cc (pore pressure: 1.38 g/cc). During this process, 32.5 m3 of mud was lost to the formation. During the previous circulation, the backpressure required to maintain the equivalent circulation density (ECD) above pore pressure, which was calculated and validated resulting in 1,100 psi annulus surface pressure (close to the limit of the equipment capacity) during the stopping time. The cementing job was pumped flawlessly with only 10 m3 of mud loss at the end of the job. During reverse circulation, contaminated spacer at surface indicated no cementing fluid had been lost to the formation and adequate open-hole coverage. The liner was successfully pressure tested to 4,500 psi, and cement logs showed that the cement had covered the open hole completely. MPC is not a conventional cementing technique. After the successful result on this job and subsequent operations, this technique is now being adopted to optimize cementing in even deeper wells in Mexico, where losses during cementing operations in the past had modified or limited the whole well construction and designed completion, and production of the well.


2011 ◽  
Vol 7 (1) ◽  
pp. 17-31
Author(s):  
Eleonóra Kecskés-Nagy ◽  
Milan Koszel ◽  
István Sztachó-Pekáry

The objective of the work was to determine the influence of working pressure and working speed on drop tracks size and changes in flow rate of flat fan nozzles. New nozzles and nozzles after laboratory wear were tested. The influence of nozzles wear on drop tracks size was tested. It was found that the increase in liquid flow rate resulted in higher values of mean diameter of the droplet track. The increase in working pressure or working speed causes decrease in drop tracks size and reduction in merging of droplets on sprayed surface. The increase of the wear was followed by increased coverage rate. This phenomenon is especially dangerous when using nozzles with a considerable wear for agricultural spraying since this causes ecological threat to environment.


2010 ◽  
Vol 61 (4) ◽  
pp. 825-839 ◽  
Author(s):  
H. Hauduc ◽  
L. Rieger ◽  
I. Takács ◽  
A. Héduit ◽  
P. A. Vanrolleghem ◽  
...  

The quality of simulation results can be significantly affected by errors in the published model (typing, inconsistencies, gaps or conceptual errors) and/or in the underlying numerical model description. Seven of the most commonly used activated sludge models have been investigated to point out the typing errors, inconsistencies and gaps in the model publications: ASM1; ASM2d; ASM3; ASM3 + Bio-P; ASM2d + TUD; New General; UCTPHO+. A systematic approach to verify models by tracking typing errors and inconsistencies in model development and software implementation is proposed. Then, stoichiometry and kinetic rate expressions are checked for each model and the errors found are reported in detail. An attached spreadsheet (see http://www.iwaponline.com/wst/06104/0898.pdf) provides corrected matrices with the calculations of all stoichiometric coefficients for the discussed biokinetic models and gives an example of proper continuity checks.


Sign in / Sign up

Export Citation Format

Share Document