Laminar Mixed Convection Adjacent to Three-Dimensional Backward-Facing Step

2001 ◽  
Vol 124 (1) ◽  
pp. 209-213 ◽  
Author(s):  
A. Li and ◽  
B. F. Armaly

Simulations of three-dimensional laminar buoyancy-assisting mixed convection adjacent to a backward-facing step in a vertical rectangular duct are presented to demonstrate the influence of Grashof number on the distributions of the Nusselt number, and the reverse flow regions that develop adjacent to the duct’s walls. The Reynolds number, and duct’s geometry are kept constant: heat flux at the wall downstream from the step is kept uniform but its magnitude varied to cover a Grashof number range of 0–4000; all the other walls in the duct are kept at adiabatic condition; and the flow, upstream of the step, is treated as fully developed and isothermal. Increasing the Grashof number results in increasing the Nusselt number; the size of the secondary recirculation flow region adjacent to the stepped wall; the size of the reverse flow region adjacent to the sidewall and the flat wall; and the spanwise flow from the sidewall toward the center of the duct. On the other hand, the size of the primary recirculation flow region adjacent to the stepped wall decreases and detaches partially from the heated stepped wall as the Grashof number increases. Details are presented and discussed.

2000 ◽  
Author(s):  
A. Li ◽  
B. F. Armaly

Abstract Results from three-dimensional numerical simulation of laminar, buoyancy assisting, mixed convection airflow adjacent to a backward-facing step in a vertical rectangular duct are presented. The Reynolds number, and duct geometry were kept constant at Re = 200, AR = 8, ER = 2, and S = 1 cm. Heat flux at the wall downstream from the step was kept uniform, but its magnitude was varied to cover a Grashof number (Gr) range between 0.0 to 4000. All the other walls in the duct were kept at adiabatic condition. The flow, upstream of the step, is treated as fully developed and isothermal. The relatively small aspect ratio of the channel is selected specifically to focus on the developments of the three-dimensional mixed convection flow in the separated and reattached flow regions downstream from the step. The presented results focus on the effects of increasing the buoyancy force, by increasing the uniform wall heat flux, on the three-dimensional flow and heat transfer characteristics. The flow and thermal fields are symmetric about the duct’s centerline. Vortex generated near the sidewall, is the major contributor to the three dimensional behavior in the flow domain, and that feature increases as the Grashof number increases. Increasing the Grashof number results in an increase in the Nusselt number, the size of the secondary recirculating flow region, the size of the sidewall vortex, and the spanwise flow from the sidewall toward the center of the channel. On the other hand, the size of the primary reattachment region decreases with increasing the Grashof number. That region lifts away and partially detaches from the downstream wall at high Grashof number flow. The maximum Nusselt number occurs near the sidewalls and not at the center of the channel. The effects of the buoyancy force on the distributions of the three-velocity components, temperature, reattachment region, friction coefficient, and Nusselt number are presented, and compared with 2-D results.


2004 ◽  
Vol 126 (5) ◽  
pp. 836-839 ◽  
Author(s):  
J. H. Nie and ◽  
B. F. Armaly

Simulations of three-dimensional laminar forced convection in a plane symmetric sudden expansion are presented for Reynolds numbers where the flow is steady and symmetric. A swirling “jetlike” flow develops near the sidewalls in the separating shear layer, and its impingement on the stepped wall is responsible for the maximum that develops in the Nusselt number adjacent to the sidewalls and for the reverse flow that develops in that region. The maximum Nusselt number on the stepped wall is located inside the primary recirculation flow region and its location does not coincide with the jetlike flow impingement region. The results reveal that the location where the streamwise component of wall shear stress is zero on the stepped walls does not coincide with the outer edge of the primary recirculation flow region near the sidewalls.


2019 ◽  
Vol 880 ◽  
pp. 723-742 ◽  
Author(s):  
Luke R. Smith ◽  
Yong Su Jung ◽  
James D. Baeder ◽  
Anya R. Jones

The physics of a rotary wing in forward flight are highly complex, particularly when flow separation is involved. The purpose of this work is to assess the role of three-dimensional (3-D) vortex dynamics, with a focus on Coriolis forces, in the evolution of vortices in the reverse flow region of a rotating wing. High-fidelity numerical simulations were performed to recreate the flow about a representative rotating wing in forward flight. A vorticity transport analysis was performed to quantify and compare the magnitudes of 2-D flow physics, vortex tilting and Coriolis effects in the resulting flow fields. Three-dimensional vortex dynamics was found to have a very small impact on the growth and behaviour of vortices in the reverse flow region; in fact, the rate of vortex growth was successfully modelled using a simple 2-D vortex method. The small role of 3-D physics was attributed to the Coriolis and vortex tilting terms being approximately equal and opposite to one another. This ultimately lead to vortex behaviour that more closely resembled a surging wing as opposed to a conventional rotating wing, a feature unique to the reverse flow region.


Author(s):  
F. M. El-Mahallawy ◽  
M. A. Hassan ◽  
M. A. Ismail ◽  
H. Zafan

The purpose of this paper is to present and evaluate numerical experiments illustrating the flow features in a 3-D furnace utilizing unconventional asymmetrical jet that creates natural recirculation zone. The numerical simulation of this aerodynamic stabilization method have unveiled the three-dimensional nature of the flow pattern which possesses a quite large reverse flow region. The size and strength of the built recirculation zone would be capable of stabilizing the burning of low-quality fuels.


2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Mohammad Yaghoub Abdollahzadeh Jamalabadi ◽  
Rasoul Kazemi ◽  
Mohammad Ghalandari

Abstract In this study, numerical simulation of formation of droplet within T-shaped microchannel is investigated. Three-dimensional, transient and two-phase numerical solution for four different microchannels with different stepping positions in the flow path was performed. Various parameters such as volume fraction, Nusselt number, pressure, Reynolds number, and temperature are discussed. The results show that the location of stepped barriers in the flow path affects the process of droplet formation, its number and size in the microchannel and should be considered as an important factor in determining the fluid behavior in the microchannel. It was observed that by placing half of the step at the entrance and the other half after the entrance, the continuous phase (S3 mode) was formed in 37.5 s compared to the other modes. The droplets were also smaller in size and more in numbers. It was also observed that the maximum value for the Nusselt number was obtained for the S2 mode where the step was located just above the discrete-phase entrance. In addition, the pressure at the inlet was higher and the flow velocity increased after the step and its pressure decreased, and continued to decrease due to frictional path.


1978 ◽  
Vol 5 (2) ◽  
pp. 106-110
Author(s):  
O.O. Mojola

This paper examines the sensitivity of vortex-flows to disturbances arising from the insertion of conventional pressure-sensing probes into the flows. With a wide variety of pitot-tubes, static-pressure probes, and transverse-cylinder yawmeters, measurements were made in the vortex (recirculation) flow region of a separated, three-dimensional, turbulent boundary layer upstream of a vertical wall. The measurements, which included both local and surface pressure data, have been analysed to reveal how the shape, size, and alignment of probes independently and collectively contribute to the probe interference.


Author(s):  
Hua-Shu Dou ◽  
Shimpei Mizuki

The flow in vaneless diffusers with large width-to-radius ratios is analyzed by using three-dimensional boundary-layer theory. The variations of the wall shear angle in the layer and the separation radius of the turbulent boundary layer versus various parameters are calculated and compared with experimental data. The effect of the separation point on the performance of vaneless diffusers and the mechanism of rotating stall are discussed. It is concluded that when the flow rate becomes very low, the reverse flow zone on the diffuser walls extends toward the entry region of diffusers. When the rotating jet-wake flow with varying total pressure passes through the reverse flow region near the impeller outlet, rotating stall is generated. The influences of the radius ratio on the reverse flow occurrence as well as on the overall performance are also discussed.


2012 ◽  
Vol 468-471 ◽  
pp. 1693-1696
Author(s):  
Wen Jun Zhong ◽  
Zhi Xia He ◽  
Zhao Chen Jiang ◽  
Yun Long Huang

A three-dimensional unsteady flow for the pulse converter exhaust manifold of 8-cylinder diesel engine was numerical simulated to get the flow characteristics of the exhaust manifold. Simulation results show that there are strong eddy flows, low pressure closed recirculation flow region in the exhaust manifold. Afterwards the structure optimization of the exhaust manifold with baffle was put forward and then the unsteady flow in the normal exhaust manifold, the exhaust manifold with baffle of 30 degrees and the exhaust manifold of 15 degrees were simulated and analyzed. It is concluded that the exhaust manifold with baffle is better than that without baffle, the recirculation flow region and the pressure loss in the exhaust manifold with baffle of 30 degrees is smaller than in it with baffle of 15 degree and the flow in the former exhaust manifold is much smoother.


2021 ◽  
Vol 3 (2) ◽  
pp. 13-29
Author(s):  
Bhanu Pratap Singh ◽  
Vijay Singh Bisht ◽  
Prabhakar Bhandari ◽  
K.S Rawat

In the present work, thermo-fluidic behavior of a heat exchanger tube with conical shaped insert has been investigated with the help of finite volume method. To enhance the heat transfer rate, two different types of roughness has been used in conical insert i.e. protrusion and dimple roughness. A three-dimensional computational model with  RNG turbulence model is used for the simulation and it has been performed for three different diameters (3 mm, 6 mm and 9 mm) and two different pitch space (120 mm and 180 mm) for both protrusion and dimple roughness. The present model has been validated with Dittus-Boelter equation and with Blasius equation for Nusselt number and friction factor, respectively. For a constant heat flux of 1200 W/m2, effect of roughness, diameter and pitch on Nusselt number and friction factor has been predicted for Reynold number range of 5000 to 30000. From the result, it is found that, the protrusion shaped roughness has better thermal performance factor than dimple shape and diameter of 6 mm has performed better than 3 mm and 9 mm for both the cases of roughness due to favorable flow dynamics.


Sign in / Sign up

Export Citation Format

Share Document