Droplet Formation in a Microchannel T-Junction With Different Step Structure Position

2020 ◽  
Vol 143 (7) ◽  
Author(s):  
Mohammad Yaghoub Abdollahzadeh Jamalabadi ◽  
Rasoul Kazemi ◽  
Mohammad Ghalandari

Abstract In this study, numerical simulation of formation of droplet within T-shaped microchannel is investigated. Three-dimensional, transient and two-phase numerical solution for four different microchannels with different stepping positions in the flow path was performed. Various parameters such as volume fraction, Nusselt number, pressure, Reynolds number, and temperature are discussed. The results show that the location of stepped barriers in the flow path affects the process of droplet formation, its number and size in the microchannel and should be considered as an important factor in determining the fluid behavior in the microchannel. It was observed that by placing half of the step at the entrance and the other half after the entrance, the continuous phase (S3 mode) was formed in 37.5 s compared to the other modes. The droplets were also smaller in size and more in numbers. It was also observed that the maximum value for the Nusselt number was obtained for the S2 mode where the step was located just above the discrete-phase entrance. In addition, the pressure at the inlet was higher and the flow velocity increased after the step and its pressure decreased, and continued to decrease due to frictional path.

2020 ◽  
Vol 31 (08) ◽  
pp. 2050113
Author(s):  
H. Montaseri ◽  
K. Tavakoli ◽  
S. Evangelista ◽  
P. Omidvar

Lateral intakes are hydraulic structures used for domestic, agricultural and industrial water conveyance, characterized by a very complex three-dimensional morphodynamic behavior: since streamlines near the lateral intake are deflected, some vortices form, pressure gradient, shear and centrifugal forces at the intake generate flow separation and a secondary movement, responsible for local scour and sediment deposition. On the other side, the modeling of flows, besides the sediment transport, in curved channels implies some more complications in comparison with straight channels. In this research, this complex process has been investigated experimentally and numerically, with the mechanism of sediment transport, bed topography evolution, flow pattern and their interactions. Experiments were performed in the Laboratory of Tarbiat Modares University, Iran, where a U-shaped channel with a lateral intake was installed and dry sediment was injected at constant rate into a steady flow. Due to the spiral flow, the bed topography changes significantly and the bed forms in turn affect the sediment entering the intake. Different from the previous works on this topic which were mainly based on laboratory experiments, here, Computational Fluid Dynamics (CFD) numerical simulations with FLUENT software were also performed, specifically with the two-phase Eulerian Model (EM) and Discrete Phase Model (DPM), at the aim of evaluating their performance in reproducing the observed physical processes. This software is used for a large variety of CFD problems, but not much for simulating sediment transport phenomena and bed topography evolution. The comparison of the results obtained through the two models against the laboratory experimental data proved a good performance of both the models in reproducing the main features of the flow, for example, the longitudinal and vertical streamlines and the mechanism of particles movement. However, the EM reveals a better performance than DPM in the prediction of the secondary flows and, consequently, of the bed topography evolution, whereas the DPM well depicts the particles pattern, predicts the location of trapped particles and determines the percentage of sediment entering the intake. The numerical models so calibrated and validated were applied to other cases with different positions of the intake in the bend. The results show that mechanism of sediment entrance into the intake varies in different position. If the intake is installed in the second half of the bend, the sediment accumulates along the inner bank of the bend and enters the intake from downstream edge of intake; on the other side, if it is placed in the first half of the bend, the sediment accumulates along both the inner and the outer bends and, therefore, more sediment enters the intake. Also the results of the simulations performed with the DPM model for different positions of the lateral intake show that for all discharge ratios, the position of 120∘ is the one which guarantees the minimum ratio of sediment diverted to the intake (Gr).


2000 ◽  
Author(s):  
A. Li ◽  
B. F. Armaly

Abstract Results from three-dimensional numerical simulation of laminar, buoyancy assisting, mixed convection airflow adjacent to a backward-facing step in a vertical rectangular duct are presented. The Reynolds number, and duct geometry were kept constant at Re = 200, AR = 8, ER = 2, and S = 1 cm. Heat flux at the wall downstream from the step was kept uniform, but its magnitude was varied to cover a Grashof number (Gr) range between 0.0 to 4000. All the other walls in the duct were kept at adiabatic condition. The flow, upstream of the step, is treated as fully developed and isothermal. The relatively small aspect ratio of the channel is selected specifically to focus on the developments of the three-dimensional mixed convection flow in the separated and reattached flow regions downstream from the step. The presented results focus on the effects of increasing the buoyancy force, by increasing the uniform wall heat flux, on the three-dimensional flow and heat transfer characteristics. The flow and thermal fields are symmetric about the duct’s centerline. Vortex generated near the sidewall, is the major contributor to the three dimensional behavior in the flow domain, and that feature increases as the Grashof number increases. Increasing the Grashof number results in an increase in the Nusselt number, the size of the secondary recirculating flow region, the size of the sidewall vortex, and the spanwise flow from the sidewall toward the center of the channel. On the other hand, the size of the primary reattachment region decreases with increasing the Grashof number. That region lifts away and partially detaches from the downstream wall at high Grashof number flow. The maximum Nusselt number occurs near the sidewalls and not at the center of the channel. The effects of the buoyancy force on the distributions of the three-velocity components, temperature, reattachment region, friction coefficient, and Nusselt number are presented, and compared with 2-D results.


2021 ◽  
pp. 57-57
Author(s):  
Zakaria Lafdaili ◽  
Sakina El-Hamdani ◽  
Abdelaziz Bendou ◽  
Karim Limam ◽  
Bara El-Hafad

In this work we study numerically the three-dimensional turbulent natural convection in a partially heated cubic cavity filled with water containing metallic nanoparticles, metallic oxides and others based on carbon.The objective is to study and compare the effect of the addition of nanoparticles studied in water and also the effect of the position of the heated partition on the heat exchange by turbulent natural convection in this type of geometry, which can significantly improve the design of heat exchange systems for better space optimization. For this we have treated numerically for different volume fractions the turbulent natural convection in the two cases where the cavity is heated respectively by a vertical and horizontal strip in the middle of one of the vertical walls. To take into account the effects of turbulence, we used the standard turbulence model ? - ?. The governing equations are discretized by the finite volume method using the power law scheme which offers a good stability characteristic in this type of flow. The results are presented in the form of isothermal lines and current lines. The variation of the mean Nusselt number is calculated for the two positions of the heated partition as a function of the volume fraction of the nanoparticles studied in water for different Rayleigh numbers.The results show that carbon-based nanoparticles intensify heat exchange by convection better and that the position of the heated partition significantly influences heat exchange by natural convection. In fact, an improvement in the average Nusselt number of more than 20% is observed for the case where the heated partition is horizontal.


2019 ◽  
Vol 21 (2) ◽  
pp. 248-262 ◽  
Author(s):  
David Markt ◽  
Ashish Pathak ◽  
Mehdi Raessi ◽  
Seong-Young Lee ◽  
Roberto Torelli

This article uniquely characterizes the secondary droplets formed during the impingement of a train of ethanol drops, using three-dimensional direct numerical simulations performed under conditions studied experimentally by Yarin and Weiss. Our numerical results have been previously validated against experimental data demonstrating the ability to accurately capture the splashing dynamics. In this work, the predictive ability of the model is leveraged to gain further insight into secondary droplet formation. We present a robust post-processing algorithm, which scrutinizes the liquid volume fraction field in the volume-of-fluid method and quantifies the number, volume and velocity of secondary droplets. The high-resolution computational simulations enable secondary droplet characterization within close proximity of the impingement point at small length and time scales, which is extremely challenging to achieve experimentally. By studying the temporal evolution of secondary droplet formation, direct connections are made between liquid structures seen in the simulation and the instantaneous distribution of secondary droplets, leading to detailed insight into the instability-driven breakup process of lamellae. Time-averaged secondary droplet characteristics are also studied to describe the global distribution of secondary droplets. Such analysis is vital to understanding fuel drop impingement in direct injection engines, facilitating the development of highly accurate spray–wall interaction models for use in Lagrangian solvers.


2001 ◽  
Vol 124 (1) ◽  
pp. 209-213 ◽  
Author(s):  
A. Li and ◽  
B. F. Armaly

Simulations of three-dimensional laminar buoyancy-assisting mixed convection adjacent to a backward-facing step in a vertical rectangular duct are presented to demonstrate the influence of Grashof number on the distributions of the Nusselt number, and the reverse flow regions that develop adjacent to the duct’s walls. The Reynolds number, and duct’s geometry are kept constant: heat flux at the wall downstream from the step is kept uniform but its magnitude varied to cover a Grashof number range of 0–4000; all the other walls in the duct are kept at adiabatic condition; and the flow, upstream of the step, is treated as fully developed and isothermal. Increasing the Grashof number results in increasing the Nusselt number; the size of the secondary recirculation flow region adjacent to the stepped wall; the size of the reverse flow region adjacent to the sidewall and the flat wall; and the spanwise flow from the sidewall toward the center of the duct. On the other hand, the size of the primary recirculation flow region adjacent to the stepped wall decreases and detaches partially from the heated stepped wall as the Grashof number increases. Details are presented and discussed.


Author(s):  
Hisanori Yagami ◽  
Tomomi Uchiyama

The behavior of small solid particles falling in an unbounded air is simulated. The particles, initially arranged within a spherical region in a quiescent air, are made to fall, and their fall induces the air flow around them, resulting in the gas-particle two-phase flow. The particle diameter and density are 1 mm and 7.7 kg/m3 respectively. A three-dimensional vortex method proposed by one of the authors is applied. The simulation demonstrates that the particles are accelerated by the induced downward air flow just after the commencement of their fall. It also highlights that the particles are whirled up by a vortex ring produced around the downward air flow after the acceleration. The effect of the particle volume fraction at the commencement of the fall is also explored.


2019 ◽  
Vol 962 ◽  
pp. 210-217
Author(s):  
Yong Ming Guo ◽  
Nozomi Fukae

It is well known that the properties of materials are a function of their microstructural parameters. The FEM is a good selection for studies of three-dimensional microstructure-property relationships. In this research, the elastic-plastic micromechanical response of the particle volume fraction of two-phase materials have been calculated using a commercial software package of the FEM, some new knowledges on the microstructure-property relationships have obtained.


2013 ◽  
Vol 275-277 ◽  
pp. 558-561
Author(s):  
Xiao Ming Yuan ◽  
Hui Jun Zhao ◽  
Jing Yi Qu

Designed a new type of double inlet cylindrical cyclone. For search the separation performance in a cylindrical cyclone. By use of CFD,applied the RSM turbulence model and Euler two-phase flow method and ASM which to simulate separation process and flow field within a double inlet cylindrical cyclone. Then compared with the single inlet cyclone,obtained velocity distribution. Analyzed the differences of discrete phase volume fraction between different viscosity. The results show that the new-style cyclone caught more stable fluid field and higher separation efficiency. And when the viscosity is about 0.75 kg/m•s, the separation efficiency and stability of the oil core is higher. Preliminary flow field law is shown up.


2015 ◽  
Vol 741 ◽  
pp. 531-535
Author(s):  
Hong Ming Zhang ◽  
Li Xiang Zhang

The paper presents the numerical analysis of erosive wear on the guide vanes of a Francis turbine using CFD code. The 3-D turbulent particulate-liquid two-phase flow equations are employed in this study. The computing domain is discretized with a full three-dimensional mesh system of unstructured tetrahedral shapes. The finite volume method is used to solve the governing equations and the pressure-velocity coupling is handled via a Pressure Implicit with Splitting of Operators (PISO) procedure. Simulation results have shown that the volume fraction of sand at the top of the guide vanes is higher than others and the maximum of volume fraction of sand is at same location with the maximum of sand erosion rate density. The erosive wear is more serious at the top of the guide vanes.


2013 ◽  
Vol 481 ◽  
pp. 241-246
Author(s):  
Zhao Miao Liu ◽  
Li Kun Liu

Junction point pressure changes during droplet formation in Y-junction microchannels with differed Y-angles, wetting property and capillary number of the liquid by using a three dimensional numerical simulation. The pressure of the junction point fluctuates throughout the droplet formation process, and it can be used to depict exactly and directly different stages of droplet in microchannels. And the pressure of junctions with different Y-angles of microchannel, different contact angles of dispersed phase with the surface, and different capillary numbers of continuous phase could thus be investigated via the droplet formation mechanism.


Sign in / Sign up

Export Citation Format

Share Document