Bubble Dynamic Parameters and Pool Boiling Heat Transfer on Plasma Coated Tubes in Saturated R-134a and R-600a

2002 ◽  
Vol 124 (4) ◽  
pp. 704-716 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Chung-Guang Ke

An optical method for measuring the bubble dynamic data subject to an isolated bubble model is presented at low heat flux q⩽1kW/m2; while the operating heat fluxes are up to 30 kW/m2. By simultaneous measurements of departure diameters, velocities, frequencies and nucleation site densities, the heat transfer contribution of an individual active site is evaluated. A single phase heat transfer correlation was used to model the present heat transfer data. The test specimens consisted of tubes with porous copper (Cu) and molybdenum (Mo) plasma coated surfaces. The porosity (ε), the thickness of the porous layer (δ), and the mean pore diameter (η) of the tested tubes are the following: 0.055⩽ε⩽0.057,100⩽δ⩽300μm, and 3⩽η⩽4μm. The tests were carried out using R-134a and R-600a as working fluid at a saturation temperature of 18°C and with low and moderate heat fluxes (⩽1 kW/m2) for boiling visualization and related measurements (⩽30 kW/m2).

2003 ◽  
Author(s):  
B. Yu ◽  
C. X. Lin ◽  
M. A. Ebadian ◽  
R. C. Prattipati

This paper presents an experimental investigation of condensation heat transfer and pressure drop characteristics of refrigerant R-134a flowing through an annular helicoidal passage with the hydraulic diameter of 8.5 mm. The angles of helix axis are oriented at 0, 45, 90 degrees to gravity. The overall and refrigerant-side heat transfer coefficients and pressure drops are experimentally determined at saturation temperature 35°C, refrigerant mass flux 35–180 kg/s·m2, and cooling water temperature 27°C. The results show that orientation has significant influence on the thermal and hydraulic behaviors of the helical pipe. The results can be employed for reference in the effective design of annular helicoidal heat exchangers with R-134a as the working fluid.


Author(s):  
Abhishek Swarnkar ◽  
Vikas J. Lakhera

Pool boiling has been a research topic of great interest over the decades due to its inherent capabilities of large heat transfer rates with narrow temperature gaps and it advocates its suitability in a large number of industrial applications. The present paper describes the effect of operating pressure on pool boiling of R141b over a plain Cu surface as well as Si-coated surface prepared by a direct current (DC) sputtering technique. The working fluid R141b undergoes saturated pool boiling under pressure ranging from −20 kPa(g) to + 30 kPa(g) with the acquired experimental data and trends compared with the existing correlations and theories. Within the pressure range considered, the surface superheat variation was insignificant at lower heat fluxes; however, at higher heat fluxes, the maximum reduction was found to be by 9.5°C and 14.8°C for the plain Cu surface and Si-coated surface, respectively, regarding the corresponding values of −20 kPa(g) pressure. With respect to the results under atmospheric conditions, at the pressure of + 30 kPa(g), a corresponding increase in heat transfer coefficient of 12.1% for the plain Cu surface and of 17.8% for a Si-coated surface was observed at a heat flux of 225 kW/m2 and 272 kW/m2, respectively. In comparison to the results under atmospheric pressure conditions, the accompanying augmentation in the critical heat flux was observed as 13.3% for the plain Cu and 21.2% for the Si-coated surfaces at a pressure of + 30 kPa(g). Based on the experimental data, a correlation is developed for predicting heat transfer coefficients within the given pressure range.


2000 ◽  
Vol 123 (2) ◽  
pp. 257-270 ◽  
Author(s):  
Shou-Shing Hsieh ◽  
Tsung-Ying Yang

Pool nucleate boiling heat transfer experiments from coated surfaces with porous copper (Cu) and molybdenum (Mo) and spirally wrapped with helical wire on copper surfaces with micro-roughness immersed in saturated R-134a and R-600a were conducted. The influence of coating thickness, porosity, wrapped helical angle, and wire pitch on heat transfer and boiling characteristics including bubble parameters were studied. The enhanced surface heat transfer coefficients with R-600a as refrigerant found are 2.4 times higher than those of the smooth surfaces. Photographs indicate that the average number of bubbles and bubble departure diameters has been found to increase linearly with heat flux, while the bubble diameters exhibit opposite trend in both refrigerants. Furthermore, the heat transfer of the boiling process for the present enhanced geometry (coated and wrapped) was modeled and analyzed. The experimental data for plasma coating and spirally wrapped surfaces were correlated in terms of relevant parameters, respectively to provide a thermal design basis for engineering applications.


2021 ◽  
Author(s):  
Anil S. Katarkar ◽  
Ajay D. Pingale ◽  
Sachin U. Belgamwar ◽  
Swapan Bhaumik

Abstract Nowadays, several researchers are taking efforts to reduce the energy consumption of heat transfer devices by enhancing pool boiling heat transfer (BHT) performance. The porous metallic composite coating on the heating surface can enhance the pool BHT performance. In the present work, Cu-GNPs nanocomposite coatings, which were prepared on a copper substrate using various current densities through a two-step electrodeposition technique, were used as heating surfaces to study the pool BHT performance of refrigerant R-134a. The surface morphology, elemental composition, thickness, surface roughness and porosity of prepared Cu-GNPs nanocomposite coatings are studied and presented in detail. All Cu-GNPs nanocomposite coated surfaces exhibited improved boiling performance compared to the plain Cu surface. The heat transfer coefficient values for Cu-GNPs nanocomposite coated Cu surfaces prepared at 0.1, 0.2, 0.3 and 0.4 A/cm2 were improved up to 1.48, 1.67, 1.82 and 1.97, respectively compared with the plain Cu surface. The enhancement in the HTC is mainly associated with the increase in surface roughness, active nucleation site density and micro/nano-porosity of the heating surface.


Author(s):  
Abdolali Khalili Sadaghiani ◽  
Yağmur Şişman ◽  
Gözde Özaydın İnce ◽  
Ali Koşar

In this study, the effect of pHEMA (Polyhydroxyethylmethacrylate) nanostructure coated surfaces on flow boiling was investigated in a rectangular microchannel. Experiments were conducted using deionized water as the working fluid to investigate flow boiling in a microchannel with dimensions of 14 cm length, 1.5 cm width, and 500 μm depth. The effect of pHEMA coatings (coated on 1.5 × 1.5 cm2 silicon plates) on heat transfer coefficients and flow patterns was assessed and supported using a high speed camera system. Although the contact angle decreases on nano-coated surfaces, due to surface porosity, boiling heat transfer coefficient increases. Furthermore, visualization results indicated that uncoated surfaces experienced a smaller nucleate boiling region. It was also observed that dryout occurs at higher heat fluxes for coated surfaces.


Author(s):  
Xiaolong Yan ◽  
Wei Li ◽  
Weiyu Tang ◽  
Hua Zhu ◽  
Zhijian Sun ◽  
...  

Enhanced condensation heat transfer of two-phase flow on the horizontal tube side receives more and more concerns for its fundamentality and importance. Experimental investigations on convective condensation were performed respectively in different horizontal tubes: (i) a smooth tube (11.43 mm, inner diameter); (ii) a herringbone tube (11.43 mm, fin root diameter); and (iii) three enhanced surface (EHT) tubes (11.5 mm, equivalent inner diameter): 1EHT tube, 2EHT-1 tube and 2EHT-2 tubes. The surface of EHT tubes is enhanced by arrays of dimples with the background of petal arrays. Experiments were conducted at a saturation temperature of approximately 320 K; 0.8 inlet quality; and 0.2 outlet quality; 72–181 kg·m−2·s−1 mass flux using R22, R32 and R410A as the working fluid. The refrigerant R32 presents great heat transfer performance than R410A and R22 at low mass flux due to its higher latent heat of vaporization and larger thermal conductivity. The heat enhancement ratio of the herringbone tube is 2.72–2.82, rated number one. The primary dimples on the EHT tube increase turbulence and flow separation, and the secondary petal pattern produce boundary layer disruption to many smaller scale eddies. The 2EHT tubes are inferior to the 1EHT tube. A performance factor is used to evaluate the enhancement effect except of the contribution of area increase.


2018 ◽  
Vol 140 (2) ◽  
Author(s):  
Chirag R. Kharangate ◽  
Ki Wook Jung ◽  
Sangwoo Jung ◽  
Daeyoung Kong ◽  
Joseph Schaadt ◽  
...  

Three-dimensional (3D) stacked integrated circuit (IC) chips offer significant performance improvement, but offer important challenges for thermal management including, for the case of microfluidic cooling, constraints on channel dimensions, and pressure drop. Here, we investigate heat transfer and pressure drop characteristics of a microfluidic cooling device with staggered pin-fin array arrangement with dimensions as follows: diameter D = 46.5 μm; spacing, S ∼ 100 μm; and height, H ∼ 110 μm. Deionized single-phase water with mass flow rates of m˙ = 15.1–64.1 g/min was used as the working fluid, corresponding to values of Re (based on pin fin diameter) from 23 to 135, where heat fluxes up to 141 W/cm2 are removed. The measurements yield local Nusselt numbers that vary little along the heated channel length and values for both the Nu and the friction factor do not agree well with most data for pin fin geometries in the literature. Two new correlations for the average Nusselt number (∼Re1.04) and Fanning friction factor (∼Re−0.52) are proposed that capture the heat transfer and pressure drop behavior for the geometric and operating conditions tested in this study with mean absolute error (MAE) of 4.9% and 1.7%, respectively. The work shows that a more comprehensive investigation is required on thermofluidic characterization of pin fin arrays with channel heights Hf < 150 μm and fin spacing S = 50–500 μm, respectively, with the Reynolds number, Re < 300.


Author(s):  
Ayman Megahed ◽  
Ibrahim Hassan ◽  
Tariq Ahmad

The present study focuses on the experimental investigation of boiling heat transfer characteristics and pressure drop in a silicon microchannel heat sink. The microchannel heat sink consists of a rectangular silicon chip in which 45 rectangular microchannels were chemically etched with a depth of 295 μm, width of 254 μm, and a length of 16 mm. Un-encapsulated Thermochromic liquid Crystals (TLC) are used in the present work to enable nonintrusive and high spatial resolution temperature measurements. This measuring technique is used to provide accurate full and local surface-temperature and heat transfer coefficient measurements. Experiments are carried out for mass velocities ranging between 290 to 457 kg/m2.s and heat fluxes from 6.04 to 13.06 W/cm2 using FC-72 as the working fluid. Experimental results show that the pressure drop increases as the exit quality and the flow rate increase. High values of heat transfer coefficient can be obtained at low exit quality (xe < 0.2). However, the heat transfer coefficient decreases sharply and remains almost constant as the quality increases for an exit quality higher than 0.2.


Author(s):  
Pei-Xue Jiang ◽  
Rui-Na Xu ◽  
Zhi-Hui Li ◽  
Chen-Ru Zhao

The convection heat transfer of CO2 at supercritical pressures in a 0.0992 mm diameter vertical tube at relatively high Reynolds numbers (Rein = 6500), various heat fluxes and flow directions are investigated experimentally and numerically. The effects of buoyancy and flow acceleration resulting from the dramatic property variations are studied. The Results show that the local wall temperature varied non-linearly for both upward and downward flow when the heat flux was high. The difference in the local wall temperature between upward and downward flow is very small when the other test conditions are held the same, which indicates that for supercritical CO2 flowing in a micro tube as employed in this study, the buoyancy effect on the convection heat transfer is insignificant and the flow acceleration induced by the axial density variation with temperature is the main factor leading to the abnormal local wall temperature distribution at high heat fluxes. The predicted temperatures using the LB low Reynolds number turbulence model correspond well with the measured data. To further study the influence of flow acceleration on the convection heat transfer, air is also used as the working fluid to numerically investigate the fluid flow and heat transfer in the vertical micro tube. The results show that the effect of compressibility on the fluid flow and heat transfer of air in the vertical micro tube is significant but that the influence of thermal flow acceleration on convection heat transfer of air in a vertical micro tube is insignificant.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
M. H. M. Grooten ◽  
C. W. M. van der Geld

When traditional air-to-air cooling is too voluminous, heat exchangers with long thermosyphons offer a good alternative. Experiments with a single thermosyphon with a large length-to-diameter ratio (188) and filled with R-134a are presented and analyzed. Saturation temperatures, filling ratios, and angles of inclination have been varied in wide ranges. A higher sensitivity of evaporation heat transfer coefficients on reduced pressure than in previous work has been found. Measurements revealed the effect of pressure or the saturation temperature on condensation heat transfer. The condensate film Reynolds number that marks a transition from one condensation heat transfer regime to another is found to depend on pressure. This effect was not accounted for by correlations from the literature. New correlations are presented to predict condensation and evaporation heat transfer rates.


Sign in / Sign up

Export Citation Format

Share Document