A New Tailpipe Design for GE Frame-Type Gas Turbines to Substantially Lower Pressure Losses

2003 ◽  
Vol 125 (1) ◽  
pp. 128-132
Author(s):  
Richard Golomb ◽  
Vivek Sahai ◽  
Dah Yu Cheng

Many GE frame gas turbines have a unique 90-deg tailpipe exhaust system that contains struts, diffusers, and turning vanes. As confirmed in a recent report by GE and other authors, it is known in the industry that this tailpipe design has large pressure losses. In this recent report a pressure loss as high as 60 in. of water (0.15 kgs/sqcm) was cited. Due to the flow separations they create, the report indicates that the struts can cause very high-pressure losses in the turbine. The report also states that these pressure losses can vary with different turbine load conditions. Cheng Fluid Systems and Cheng Power Systems have conducted a study aimed at substantially reducing these pressure losses. Flow control technology introduced to the refinery industry, i.e., the Cheng Rotation Vane (CRV) and the Large Angle Diffuser (LAD) can be used to mitigate the flow separation and turbulence that occurs in turns, bends, and large sudden expansions. Specifically the CRV addresses the flow separations in pipe turns, and the LAD addresses the flow problems that occur with large sudden expansion areas. The paper will introduce the past experience of the CRV and LAD, and will then use computer simulations to show the flow characteristics around a new design. First, the study meticulously goes through the entire GE exhaust system, starting with the redesign of the airfoil shape surrounding the struts. This new design has a larger angle of attack and minimizes the flow separations over a much wider operating range. Second, the pros and cons of the concentric turning vanes are studied and it is shown that they are more flow restrictive, rather than flow enhancing. Third, it is shown that the highly turbulent rectangular box-type exhaust ducting design, substantially contributes to high noise levels and pressure losses. In this paper a completed design will be shown that incorporates a new airfoil shape for the struts, and by using CRV flow technology in combination with the LAD flow technology, the pressure recovery can be enhanced. If the pressure losses could be reduced by 40 inches of water (0.10 kgs/sqcm), the turbine efficiency could be increased by 5%, and the power output could be increased by 6%.

Author(s):  
Richard Golomb ◽  
Vivek Sahai ◽  
Dah Yu Cheng

Many GE frame gas turbines have a unique 90-degree tailpipe exhaust system that contains struts, diffusers, and turning vanes. As confirmed in a recent report by GE and other authors [1], it is known in the industry that this tailpipe design has large pressure losses. In this recent report a pressure loss as high as 60 inches of water (0.15 kgs/sqcm) was cited. Due to the flow separations they create, the report indicates that the struts can cause very high-pressure losses in the turbine. The report also states that these pressure losses can vary with different turbine load conditions. Cheng Fluid Systems and Cheng Power Systems have conducted a study aimed at substantially reducing these pressure losses. Flow control technology introduced to the refinery industry, i.e., the Cheng Rotation Vane (CRV) and the Large Angle Diffuser (LAD) can be used to mitigate the flow separation and turbulence that occurs in turns, bends, and large sudden expansions. Specifically the CRV addresses the flow separations in pipe turns, and the LAD addresses the flow problems that occur with large sudden expansion areas. The paper will introduce the past experience of the CRV and LAD, and will then use computer simulations to show the flow characteristics around a new design. First, the study meticulously goes through the entire GE exhaust system, starting with the redesign of the airfoil shape surrounding the struts. This new design has a larger angle of attack and minimizes the flow separations over a much wider operating range. Second, the pros and cons of the concentric turning vanes are studied and it is shown that they are more flow restrictive, rather than flow enhancing. Third, it is shown that the highly turbulent rectangular box type exhaust ducting design, substantially contributes to high noise levels and pressure losses. In this paper a completed design will be shown that incorporates a new airfoil shape for the struts, and by using CRV flow technology in combination with the LAD flow technology, the pressure recovery can be enhanced. If the pressure losses could be reduced by 40 inches of water (0.10 kgs/sqcm), the turbine efficiency could be increased by 5%, and the power output could be increased by 6%.


Author(s):  
Scott T. Cloyd ◽  
Arthur J. Harris

The gas turbine industry has adopted the practice of rating engine performance at ISO standard conditions; 15 degrees C, 1.033 ata, 100% methane fuel, and no inlet or exhaust system pressure losses with power output referenced to the generator terminals. (ISO, 1989) While these standards are useful in putting original equipment manufacturers’ (OEM’s) ratings on an equivalent basis it is not likely that an engine would be installed or tested under these types of conditions. To account for variations in engine operating conditions equipment manufacturers’ have utilized performance correction curves to show the influence of changing one operating parameter while holding all others constant. The purpose of this paper is to review the correction curves that are used for initial project application studies, and the variations to the curves that occur when a unit is put into service as a result of the methods used to control engine operation. Sample corrections curves and a brief explanation of the correction curves are presented to illustrate the variations in the curves. The paper also presents a new method for illustrating the influence of fuel heating value and composition on engine performance for natural gas and oil fuel. All data presented is for a single shaft, constant speed gas turbine. Two shaft or three shaft gas turbines will not have these correction curves.


Author(s):  
Mariusz Niklas ◽  
M. Favre-Marinet

The flow characteristics of a network of parallel microchannels (hydraulic diameter: 110 μm) were investigated both experimentally and numerically in the present work. The cross-section of the micro-channels was triangular for further application to micro heat pipes. Measurements of the pressure drop across the microchannels network showed a dramatic increase of the pressure losses and a departure from the law of fully developed flow as soon as the Reynolds number of the flow exceeded about 10. Numerical computations of the flow were performed by using the classical laws of hydrodynamics in order to explain this surprizing result. They showed a good agreement with the experimental results, which suggests that there are no size effects at the length scale used in the experiments. Moreover, the mechanisms responsible of the large pressure drop in the high-range of Reynolds number are identified by the numerical analysis. They correspond to extra head losses due to separation in several parts of the test cell.


2021 ◽  
Vol 11 (14) ◽  
pp. 6319
Author(s):  
Sung-Woong Choi ◽  
Hyoung-Seock Seo ◽  
Han-Sang Kim

In the present study, the flow characteristics of butterfly valves with different sizes DN 80 (nominal diameter: 76.2 mm), DN 262 (nominal diameter: 254 mm), DN 400 (nominal diameter: 406 mm) were numerically investigated under different valve opening percentages. Representative two-equation turbulence models of two-equation k-epsilon model of Launder and Sharma, two-equation k-omega model of Wilcox, and two-equation k-omega SST model of Menter were selected. Flow characteristics of butterfly valves were examined to determine turbulence model effects. It was determined that increasing turbulence effect could cause many discrepancies between turbulence models, especially in areas with large pressure drop and velocity increase. In addition, sensitivity analysis of flow properties was conducted to determine the effect of constants used in each turbulence model. It was observed that the most sensitive flow properties were turbulence dissipation rate (Epsilon) for the k-epsilon turbulence model and turbulence specific dissipation rate (Omega) for the k-omega turbulence model.


Author(s):  
Shanzhong Duan ◽  
Mutasim E. Gamal

This paper presents a new method for computer-aided modeling and analyzing of pulsation dampeners used in fluid power systems for vibration reduction. The pulsation dampeners are widely used in various fluid power systems to reduce vibration induced by power pumps. The vibration induced by power pumps in fluid systems may be severe enough to cause the damage of components in pipelines if a pulsation dampener is not installed. However, the current methods used in industries for the design and analysis of the dampeners are manually experience-orientated procedures. They are not adaptable to new technologies. The new modeling method will efficiently automate and improve the current modeling and analysis procedure of various pulsation dampeners with a minimum user effort. The proposed method is a result of utilizing the analogy between electrical circuits and hydraulic circuits. In the new method, a spherical pulsation dampener can be equivalent to a lumped hydraulic circuit installed in a distributed fluid pipeline system. The new method has been developed from the authors’ previous work of an impedance-based model in which only the effect of capacitance and inductance was considered without fluid resistance. In reality, the influence of fluid resistance is significant. This paper will take fluid resistance into considerations and form a resistance-impedance-based model.


Author(s):  
C. W. Simpson ◽  
D. E. Y. Scarlett

During initial design studies for a new range of turbo-chargers it was apparent that a considerable gain of efficiency could be achieved by a reduction of turbine casing losses. In this paper the theoretical and experimental pressure losses obtained from rig tests on the inlet and outlet casings for old and new designs will be presented. The inlet casing tests were completed on an axial entry casing with transition from circular to semi-annular section. The effect of this transition piece on gas incidences is also shown for the semi-annular nozzle entry. Studies on the outlet casing as a transition from annular through radial to axial flow have been completed and will be presented as a pressure loss coefficient for various designs. The tests have been undertaken with both convex and flat plate radial diffusers, with or without swirl. Different outlet ducts were used to determine the effects on pressure losses in the casings, and the results are discussed. Finally, the gains in overall turbine efficiency obtained by adopting the beneficial results from these tests are considered.


Author(s):  
Mustafa Bulut Coskun ◽  
Mahmut Faruk Aksit

With the race for higher power and efficiency new gas turbines operate at ever increasing pressures and temperatures. Increased compression ratios and firing temperatures require many engine parts to survive extended service hours under large pressure loads and thermal distortions while sustaining relative vibratory motion. On the other hand, wear at elevated temperatures limits part life. Combined with rapid oxidation for most materials wear resistance reduces rapidly with increasing temperature. In order to achieve improved wear performance at elevated temperatures better understanding of combined wear and oxidation behavior of high temperature super alloys and coatings needed. In an attempt to aid designers for high temperature applications, this work provides a quick reference for the high temperature friction and wear research available in open literature. High temperature friction and wear data have been collected, grouped and summarized in tables.


Author(s):  
Robert F. Steele ◽  
Dale C. Paul ◽  
Torgeir Rui

Since the early 1990’s there have been significant changes in the gas turbine, and power generation market place. The ‘F-Class’ Gas Turbines, with higher firing temperatures, single crystal materials, increased compressor pressure ratios and low emission combustion systems that were introduced in the early 1990’s have gained significant field experience. Many of the issues experienced by these new product introductions have been addressed. The actual reliability growth and current performance of these advanced technology machines will be examined. Additionally, the operating profiles anticipated for many of the units installed during this period has been impacted by both changes in the anticipated demand and increases in fuel costs, especially the cost of natural gas. This paper will review how these changes have impacted the Reliability, Availability, and Maintainability performance of gas turbines. Data from the ORAP® System, maintained by Strategic Power Systems, Inc, will be utilized to examine the actual RAM performance over the past 10 to 15 years in relation to goals and expectations. Specifically, this paper will examine the reliability growth of the F-Class turbines since the 1990’s and examine the reliability impact of duty cycle on RAM performance.


Author(s):  
F. Song ◽  
J. W. Shi ◽  
L. Zhou ◽  
Z. X. Wang ◽  
X. B. Zhang

Lighter weight, simpler structure, higher vectoring efficiency and faster vector response are recent trends in development of aircraft engine exhaust system. To meet these new challenges, a concept of hybrid SVC nozzle was proposed in this work to achieve thrust vectoring by adopting a rotatable valve and by introducing a secondary flow injection. In this paper, we numerically investigated the flow mechanism of the hybrid SVC nozzle. Nozzle performance (e.g. the thrust vector angle and the thrust coefficient) was studied with consideration of the influence of aerodynamic and geometric parameters, such as the nozzle pressure ratio (NPR), the secondary pressure ratio (SPR) and the deflection angle of the rotatable valve (θ). The numerical results indicate that the introductions of the rotatable valve and the secondary injection induce an asymmetrically distributed static pressure to nozzle internal walls. Such static pressure distribution generates a side force on the primary flow, thereby achieving thrust vectoring. Both the thrust vector angle and vectoring efficiency can be enhanced by reducing NPR or by increasing θ. A maximum vector angle of 16.7 ° is attained while NPR is 3 and the corresponding vectoring efficiency is 6.33 °/%. The vector angle first increases and then decreases along with the elevation of SPR, and there exists an optimum value of SPR for maximum thrust vector angle. The effects of θ and SPR on the thrust coefficient were found to be insignificant. The rotatable valve can be utilized to improve vectoring efficiency and to control the vector angle as expected.


Author(s):  
Roland Mücke

MCrAlY coatings are applied in industrial gas turbines and aircraft engines to protect surfaces of hot gas exposed components from oxidation and corrosion at elevated temperature. Apart from oxidation resistance, coatings have to withstand cracking caused by cyclic deformation since coating cracks might propagate into the substrate material and thus limit the lifetime of the parts. In this context, the prediction of the coating maximum stress and the strain range during cyclic loading is important for the lifetime analysis of coated components. Analyzing the state of stress in the coating requires the application of viscoplastic material models. A coupled full-scale cyclic analysis of substrate and coating, however, is very expensive because of the different flow characteristics of both materials. Therefore, this paper proposes an uncoupled modeling approach, which consists of a full-scale cyclic analysis of the component without coating and a fast postprocessing procedure based on a node-by-node integration of the coating constitutive model. This paper presents different aspects of the coating viscoplastic behavior and their computational modeling. The uncoupled analysis is explained in detail and a validation of the procedure is addressed. Finally, the application of the uncoupled modeling approach to a coated turbine blade exposed to a complex engine start-up and shut-down procedure is shown. Throughout the paper bold symbols denote tensors and vectors, e.g., σ stands for the stress tensor with the components σij. The superscripts (.)S and (.)C symbolize the substrate and the coating, respectively, e.g., εthS stands for the tensor of substrate thermal strain. Further symbols are explained in the text.


Sign in / Sign up

Export Citation Format

Share Document