scholarly journals Analysis of Flow Characteristics and Effects of Turbulence Models for the Butterfly Valve

2021 ◽  
Vol 11 (14) ◽  
pp. 6319
Author(s):  
Sung-Woong Choi ◽  
Hyoung-Seock Seo ◽  
Han-Sang Kim

In the present study, the flow characteristics of butterfly valves with different sizes DN 80 (nominal diameter: 76.2 mm), DN 262 (nominal diameter: 254 mm), DN 400 (nominal diameter: 406 mm) were numerically investigated under different valve opening percentages. Representative two-equation turbulence models of two-equation k-epsilon model of Launder and Sharma, two-equation k-omega model of Wilcox, and two-equation k-omega SST model of Menter were selected. Flow characteristics of butterfly valves were examined to determine turbulence model effects. It was determined that increasing turbulence effect could cause many discrepancies between turbulence models, especially in areas with large pressure drop and velocity increase. In addition, sensitivity analysis of flow properties was conducted to determine the effect of constants used in each turbulence model. It was observed that the most sensitive flow properties were turbulence dissipation rate (Epsilon) for the k-epsilon turbulence model and turbulence specific dissipation rate (Omega) for the k-omega turbulence model.

2010 ◽  
Vol 132 (5) ◽  
Author(s):  
Seok-Ki Choi ◽  
Seong-O Kim ◽  
Hoon-Ki Choi

A numerical study for the evaluation of heat transfer correlations for sodium flows in a heat exchanger of a fast breeder nuclear reactor is performed. Three different types of flows such as parallel flow, cross flow, and two inclined flows are considered. Calculations are performed for these three typical flows in a heat exchanger changing turbulence models. The tested turbulence models are the shear stress transport (SST) model and the SSG-Reynolds stress turbulence model by Speziale, Sarkar, and Gaski (1991, “Modelling the Pressure-Strain Correlation of Turbulence: An Invariant Dynamical System Approach,” J. Fluid Mech., 227, pp. 245–272). The computational model for parallel flow is a flow past tubes inside a circular cylinder and those for the cross flow and inclined flows are flows past the perpendicular and inclined tube banks enclosed by a rectangular duct. The computational results show that the SST model produces the most reliable results that can distinguish the best heat transfer correlation from other correlations for the three different flows. It was also shown that the SSG-RSTM high-Reynolds number turbulence model does not deal with the low-Prandtl number effect properly when the Peclet number is small. According to the present calculations for a parallel flow, all the old correlations do not match with the present numerical solutions and a new correlation is proposed. The correlations by Dwyer (1966, “Recent Developments in Liquid-Metal Heat Transfer,” At. Energy Rev., 4, pp. 3–92) for a cross flow and its modified correlation that takes into account of flow inclination for inclined flows work best and are accurate enough to be used for the design of the heat exchanger.


2009 ◽  
Vol 131 (4) ◽  
Author(s):  
Pavel E. Smirnov ◽  
Florian R. Menter

A rotation-curvature correction suggested earlier by Spalart and Shur (1997, “On the Sensitization of Turbulence Models to Rotation and Curvature,” Aerosp. Sci. Technol., 1(5), pp. 297–302) for the one-equation Spalart–Allmaras turbulence model is adapted to the shear stress transport model. This new version of the model (SST-CC) has been extensively tested on a wide range of both wall-bounded and free shear turbulent flows with system rotation and/or streamline curvature. Predictions of the SST-CC model are compared with available experimental and direct numerical simulations (DNS) data, on the one hand, and with the corresponding results of the original SST model and advanced Reynolds stress transport model (RSM), on the other hand. It is found that in terms of accuracy the proposed model significantly improves the original SST model and is quite competitive with the RSM, whereas its computational cost is significantly less than that of the RSM.


Author(s):  
Yu Duan ◽  
Matthew D. Eaton ◽  
Michael J. Bluck ◽  
Christopher Jackson

This paper presents an assessment of the performance of four eddy viscosity models in STAR-CCM+ 12.04 in simulating water flow through an industrial size butterfly valve: the standard k-ε model, realizable model, lag EB k-ε model and k-ω-SST model. This is achieved by comparing RANS predictions with physical measurements already available in literature. Although the lag EB k-ε model and k-ω-SST model are supposed to have a better ability to capture the anisotropic turbulence effect and flow separations, it has been demonstrated that the standard k-ε model is still a robust model in terms of predicting the flow coefficient (Cv). The general error of Cv by the standard k-ε model is less than 10% for the considered openings with the exception of 80°. This work also demonstrates that the eddy viscosity models have more difficulty predicting the torque coefficient (Ct) than Cv.


2011 ◽  
Vol 52-54 ◽  
pp. 1165-1170
Author(s):  
Fu You Xu ◽  
Xu Yong Ying ◽  
Zhe Zhang

The results of unsteady Reynolds averaged Navier-Stokes (URANS) simulations of flow around a square cylinder using two-dimensional hybrid meshes were presented in this paper. The first part examined the accuracy of various RANS turbulence models, i.e. the standard model, RNG model, realizable model, standard model, SST model, and RSM, by comparing their results with available experimental data. Despite the limits imposed by the RANS approach and the relatively inexpensive two-dimensional computations, the main features of this complex flow can be predicted reasonably well. Among the computations using various RANS models compared here, the SST model shows the best agreement with the experiment. The second part investigated the effects of corner cutoffs on unsteady flow characteristics around a square cylinder by using the SST model. Especially the detailed near-surface flow structure around the cylinder was focused on, aiming at giving an explanation for the drastic modification of the aerodynamic characteristics as the corner shape is slightly changed.


2018 ◽  
Vol 15 (1) ◽  
pp. 173-180 ◽  
Author(s):  
Yasser M. Ahmed ◽  
A.H. Elbatran

Purpose This paper aims to investigate numerically the turbulent flow characteristics over a backward facing step. Different turbulence models with hybrid computational grid have been used to study the detached flow structure in this case. Comparison between the numerical results and the available experiment data is carried out in the present study. The results of the different turbulence models were in a good agreement with the experimental results. The numerical results also concluded that the k-kl-ω turbulence model gave favorable results compared with the experiment. Design/methodology/approach It is very important to study the flow characteristics of detached flows. Therefore, the current study investigates numerically the flow characteristics in backward facing step by using two-, three- and seven-equation turbulence models in the finite volume code ANSYS Fluent. In addition, hybrid grid has been used to improve the capability of the unstructured mesh elements for predicting the flow separation in this case. Comparison between the different turbulence models and the available experimental data was done to find the most suitable turbulence model for simulating such cases of detached flows. Findings The present numerical simulations with the different turbulence models predicted efficiently the flow characteristics over the backward facing step. The transition k-kl-ω gave the best acceptable results compared with experimental data. This is a good concluded remark in the fields of fluid mechanics and hydrodynamics because the phenomenon of flow separation is not easy to be predicted numerically and can affect greatly on the predicted drag of moving bodies in many engineering applications. Originality/value The CFD results of using different turbulence models have been validated with the experimental work, and the results of k-kl-ω proven acceptable with flow characteristics. The results of the current study conclude that the use of k-kl-ω turbulence model will contribute towards a more efficient utilization in the fields of fluid mechanics and hydrodynamics.


Author(s):  
Jian Wang ◽  
Yong Wang ◽  
Houlin Liu ◽  
Haoqin Huang ◽  
Linglin Jiang

Purpose – The purpose of this paper is to study the unsteady caivitating flows in centrifugal pump, especially for improving the turbulence model to obtain highly resolution results-capable of predicting the cavitation inception, shedding off and collapse procedures. Design/methodology/approach – Both numerical simulations and experimental visualizations were performed in the present paper. An improved RCD turbulence models was proposed by considering three corrected methods: the rotating corrected method, the compressible corrected method and the turbulent viscosity corrected method. Unsteady RANS computations were conducted to compare with the experiments. Findings – The comparison of pump cavitation performance showed that the RCD turbulence model obtained better performance both in non-cavitation and cavitation conditions. The visualization of the cavitation evolution was recorded to validate the unsteady simulations. Good agreement was noticed between calculations and visualizations. It is indicated the RCD model can successfully capture the bubbles detachment and collapse at the rear of the cavity region, since it effectively reduces the eddy viscosity in the multiphase region of liquid and vapor. Furthermore, the eddy viscosity, the instantaneous pressure and density distribution were investigated. The effectiveness of the compressibility was found. Meanwhile, the influence of the rotating corrected method on prediction was explored. It is found that the RCD model solved more unsteady flow characteristics. Originality/value – The current work presented a turbulence model which was much more suitable for predicting the cavitating flow in centrifugal pump.


Author(s):  
Ahmed Ramadhan Al-Obaidi

AbstractIn centrifugal pumps, it is important to select appropriate turbulence model for the numerical simulation in order to obtain reliable and accurate results. In this work, ten turbulence models in 3-D transient simulation for the centrifugal pump are chosen and compared. The pump performance is validated with experimental results. The numerical results reveal that the SST turbulence model was closer to the experimental results in predicting head. In addition, the pressure variation trend for the ten models is very similar which increases and then decreases from the inlet to outlet of the pump along the streamline. The SST k-ω model predicts the performance of the pump was more accurately than other turbulent models. Furthermore, the results also found that the error is the least at design operation condition 300(l/min), which is around 1.98 % for the SST model and 2.14 % and 2.38 % for the LES and transition omega model. Within 7.61 %, the errors at higher flow rate 350(l/min) for SST. The error for SST model is smaller as compared to different turbulent models. For the Realizable k-ɛ model, the errors fluctuate were more high than other models.


Author(s):  
S. P. Bhat ◽  
R. K. Sullerey

The selection of a turbulence model for a problem is not trivial and has to be done systematically after comparison of various models with experimental data. It is a well known fact that there is no such turbulence model which fits all problems ([3], [13]). The flow in S-duct diffuser is a very complex one where both separation and secondary flow coexist. Previous work by the author on CFD analysis of S-duct diffuser was done using k-ε-Standard model [1], however it has been seen that choosing other turbulence model may result in better capturing of the physics in such a problem. Also flow control, to reduce energy losses, is achieved using a technique called Zero Net Mass Flow (ZNMF), in which suction and vortex generation jets (VGJ) are combined and positioned at optimum location. A proper turbulence model has to be chosen for capturing these phenomena effectively. Extensive experimental data is available on this problem and ZNMF technique from previous work done by one of the authors which is used for validating the CFD results. Here the focus is on choosing the best turbulence model for the S-duct diffuser. Numerical (CFD) analysis is carried out using Ansys Fluent 13.0 with six turbulence models for the geometry with (ZNMF) and without (Bare duct) flow control and then compared with the experimental results. The turbulence models used are Spalart-Allmaras, three variants of k-ε – Standard, RNG and Realizable and two variants of k-ω – Standard and SST model. All the parameters of comparison are non-dimensionalized using the free stream properties, so that the results are applicable to a wider range of problems. This work is limited to incompressible flow analysis, as the experimental data is only available for low Mach number flows. Comparison of all these models clearly shows that results obtained using k-ω-SST model are very comparable to the experimental results for the bare duct (without flow control) and flow controlled duct both in terms of distribution of properties and aggregate results. Compressible flow analysis can be attempted to achieve reliable results in future with ZNMF using the best turbulence model based on this study.


Author(s):  
Geun Jong Yoo ◽  
Won Dae Jeon

Suitable turbulence model is required in the course of establishing a proper analysis methodology for thermal stripping phenomena. For this purpose, three different turbulence models of k-ε model, modified k-ε model, and full Reynolds stress model and VLES are applied to analyze unsteady turbulent flows with temperature variation. Four test cases are selected for verification. These are vertical jet flows with water and sodium, parallel jet flow with sodium, and merging pipe flow through T-junction with sodium. The geometries of test cases well represent common places where thermal stripping might be occurred. The turbulence model computation shows overall jet flow characteristics well and good comparison of mean temperature distribution. Temperature variance (θ′2) is rather over-predicted, but location of high temperature variance is matched well with that of the large amplitude of temperature variation of experimental results. Meanwhile, mixing of hot and cold jet flow is found to be not that active.


2017 ◽  
Vol 2 (11) ◽  
pp. 28
Author(s):  
Md. Safayet Hossain ◽  
Md. Ishtiaque Hossain ◽  
Somit Pramanik ◽  
Dr. Jamal Uddin Ahamed

This study attempts to illustrate the behavior of a fully developed turbulent flow by using k-ε turbulence model. A two dimensional smooth bend channel is adopted for this experiment and water was chosen as working fluid. The Reynolds number was gradually increased to predict the diversity in turbulent kinetic energy (TKE), turbulent dissipation rate, turbulent intensity and eddy viscosity. Primarily the flow has been solved by employing three distinct k-ϵ turbulence models namely, Standard, Renormalization-group (RNG) and Realizable model. After experimenting with ten different sample (from 74E03 to 298E03) of Reynolds numbers, each of these analyses explicitly showed that Standard k-ε model gives much higher value of any aforementioned turbulent properties with respect to other two equation turbulence models. Later it’s been discovered that TKE obtained from Standard k-ω model is almost same as Realizable k-ε model (for Re=298E03, the difference is about 1.8%). It has been observed that the skin friction coefficient at the bend region obtained from different two equation models (Standard, Realizable and RNG k-ϵ model and Standard k-ω model) are almost similar to each other for each sample of Reynolds number. Quadrilateral elements were taken into consideration for grid generation in this analysis. Also, to decrease cost and to achieve further accuracy as well as reduced time consumption mapped faced meshing was utilized.


Sign in / Sign up

Export Citation Format

Share Document