Experiments on Deep-Water Waves With Two-Dimensional Surface Patterns

2003 ◽  
Vol 125 (1) ◽  
pp. 48-53 ◽  
Author(s):  
Joseph L. Hammack ◽  
Diane M. Henderson

Experiments are conducted in a three-dimensional wave basin with a wavemaker system comprising 32 side-by-side paddles for which there is precise control. Two types of wavemaker forcings are used to create two-dimensional surface patterns: (1) two symmetric carrier waves interacting at an oblique angle and (2) a single carrier wave propagating in the x-direction with a Jacobi elliptic, sn-function modulation in the y-direction. Data are presented from overhead photographs and from time series obtained by traversing a wave-gage through the patterns. Two parameters are systematically varied: the horizontal aspect ratio of the cells comprising the surface pattern and the measure of nonlinearity of the input wavefield. Unlike such waves in shallow water for which the surface pattern is made up of six-sided cells, the wave pattern for waves in deep water is made up of rectangular cells. Both the overhead photographs and the time series show that for most values of the two parameters, the wavefields evolve with significant modulations in both the x and y directions. In particular, when the aspect ratio of the cells is below about 0.4 for a fixed measure of nonlinearity, there is significant modulation in the y-direction that results in cells with smaller aspect ratios. For aspect ratio above about 0.4, the cells appear to be stable (except for viscous decay) for smaller values of nonlinearity. However, for larger values of nonlinearity even these cells modulate in the y-direction, further increasing the aspect ratio of the evolving cells. For the largest value of nonlinearity considered, the pattern evolves into one that comprises cells with aspect ratios of about 1.

Author(s):  
Joseph L. Hammack ◽  
Diane M. Henderson

Experiments are conducted in a three-dimensional wave basin with a wavemaker system comprising 32 side-by-side paddles for which there is precise control. Two types of wavemaker forcings are used to create two-dimensional surface patterns: (1) two symmetric carrier waves interacting at an oblique angle and (2) a single carrier wave propagating in the x-direction with a Jacobi elliptic, sn-function modulation in the y-direction. Data are presented from overhead photographs and from time series obtained by traversing a wave-gage through the patterns. Two parameters are systematically varied: the horizontal aspect ratio of the cells comprising the surface pattern and the measure of nonlinearity of the input wavefield. Unlike such waves in shallow water for which the surface pattern is made up of six-sided cells, the wave pattern for waves in deep water is made up of rectangular cells. Both the overhead photographs and the time series show that for most values of the two parameters, the wavefields evolve with significant modulations in both the x and y directions. In particular, when the aspect ratio of the cells is below about 0.4 for a fixed measure of nonlinearity, there is significant modulation in the y-direction that results in cells with smaller aspect ratios. For aspect ratio above about 0.4, the cells appear to be stable (except for viscous decay) for smaller values of nonlinearity. However, for larger values of nonlinearity even these cells modulate in the y-direction, further increasing the aspect ratio of the evolving cells. For the largest value of nonlinearity considered, the pattern evolves into one that comprises cells with aspect ratios of about 1.


2005 ◽  
Vol 532 ◽  
pp. 1-52 ◽  
Author(s):  
JOSEPH L. HAMMACK ◽  
DIANE M. HENDERSON ◽  
HARVEY SEGUR

2015 ◽  
Vol 29 (35n36) ◽  
pp. 1550237 ◽  
Author(s):  
Michiko Shimokawa ◽  
Toshiya Takami

When a droplet of a higher-density solution (HDS) is placed on the top of a lower-density solution (LDS), the HDS on the surface of the LDS sinks due to gravitational instability. In the sinking process, the HDS draws a fractal pattern or a hole/cell pattern on the surface of the LDS. It is observed that the surface pattern is determined by an aspect ratio of the container and viscosity of the LDS. In the formation of the surface pattern, a time series of the HDS density is analyzed. It is found that the profile of the series for the fractal pattern is different from that for the hole/cell pattern. In order to clarify the difference, we propose a phenomenological model for the time series to obtain fitting functions for both patterns.


2018 ◽  
Vol 847 ◽  
pp. 768-785 ◽  
Author(s):  
Mingshui Li ◽  
Yang Yang ◽  
Ming Li ◽  
Haili Liao

The applicability of the strip assumption in the estimation of the unsteady lift response of a two-dimensional wing in turbulent flow is investigated. The ratio between the lift spectrum calculated from the two-wavenumber analysis and the lift spectrum calculated from the strip assumption is used to evaluate the accuracy of the strip assumption. It is shown that the accuracy of the strip assumption is controlled by the ratio of the turbulence integral scale to the chord and the aspect ratio. With an increase of these two parameters, the ratio for evaluating the accuracy of the strip assumption increases, the one-wavenumber transfer function obtained from the strip assumption approaches the Sears function gradually. When these two parameters take suitable values, the strip assumption could be applicable to the calculation of the unsteady lift on a wing in turbulent flow. Here, the term aspect ratio refers to the ratio of the specified span (an finite spanwise length of the two-dimensional wing) to the chord, the unsteady lift is calculated over this specified spanwise length. The theoretical analysis is verified by means of force measurement experiments conducted in a wind tunnel. In the experiment, a square passive grid is installed downstream of the entrance of the test section to generate approximately homogeneous and isotropic turbulence. Three rectangular wings with different aspect ratios ($\unicode[STIX]{x1D703}=3$, 5 and 7) are used. These wing models have an NACA 0015 profile cross-section and a fixed chord length $c=0.16~\text{m}$. The testing results show that, at a fixed ratio of turbulence integral scale to chord, the deviation between the experimental one-wavenumber transfer function obtained from the strip assumption and the Sears function is reduced with increasing aspect ratio, as expected by the theoretical predictions. However, due to the effect of thickness, the experimental values at high frequencies cannot be captured by the Sears function which is derived based on the flat plate assumption. In practical applications, the effect of thickness on the transfer function should be considered.


1983 ◽  
Vol 4 ◽  
pp. 180-187 ◽  
Author(s):  
B. Michel ◽  
D. Blanchet

The problem of a floating ice sheet hitting a structure with a vertical face appears to be a simple one but, in fact, has only been solved for a limited number of cases. Research work on this question usually reports on an indentation coefficient which relates the average pressure on the indenter to the uniaxial crushing strength of the ice. Very few tests have been made in the brittle range of ice failure. In this particular area of study, this paper reports on 27 tests that were conducted in a cold-room water basin where controlled S2floating ice sheets were produced with a surface area of 4 × 4 m, three sides being fully restrained and the other, freely float! no, being submitted to the impact of the moving indenter. All tests were carried out at computed indentation rates varying from 0.017 to 0.34 s-1. In this range this ice would normally be considered to act as a brittle material. The thickness of the ice sheets varied from 1.2 to 9.0 cm and the indenter width from 5 cm to 1 m. Overall, the aspect ratio relating these two parameters could be varied from 0.5 to 83.Results have shown that for aspect ratios <5, there was an important oscillatory effect which caused the formation of pi asti fi ed triangles in front of the indenter, increasing its resistance as it would under ductile conditions. Because of this plastification, an extrusion effect appeared in front of the indenter as the broken ice crystals were blown up and down in front of the fast-moving indenter. The theory of plasticity which gives an indentation coefficient of 2.97 seems to apply in this case. Another mode of failure which occurred with aspect ratios 5 was cleavage in the plane of the ice sheet which also gives a higher indentation coefficient for S2ice, but of the same order of magnitude as previously.For intermediate values of the aspect ratio, between 5 and 20, the theory of elasticity used by Michel (1978) seems to apply well. Shear cracks are first formed on both sides of the square indenter and control the maximum pressure when they propagate inside forming big triangles in front of it.Finally, for aspect ratios ~>20, buckling of the ice occurs, either after or at the same time as the formation of wedges, together with a reduction in the indentation coefficient to a value close to that given by the theory of buckling of a truncated 45° wedge with a hinged edge.


2012 ◽  
Vol 713 ◽  
pp. 216-242 ◽  
Author(s):  
Jun Hu ◽  
Daniel Henry ◽  
Xie-Yuan Yin ◽  
Hamda BenHadid

AbstractThree-dimensional Rayleigh–Bénard instabilities in binary fluids with Soret effect are studied by linear biglobal stability analysis. The fluid is confined transversally in a duct and a longitudinal throughflow may exist or not. A negative separation factor $\psi = \ensuremath{-} 0. 01$, giving rise to oscillatory transitions, has been considered. The numerical dispersion relation associated with this stability problem is obtained with a two-dimensional Chebyshev collocation method. Symmetry considerations are used in the analysis of the results, which allow the classification of the perturbation modes as ${S}_{l} $ modes (those which keep the left–right symmetry) or ${R}_{x} $ modes (those which keep the symmetry of rotation of $\lrm{\pi} $ about the longitudinal mid-axis). Without throughflow, four dominant pairs of travelling transverse modes with finite wavenumbers $k$ have been found. Each pair corresponds to two symmetry degenerate left and right travelling modes which have the same critical Rayleigh number ${\mathit{Ra}}_{c} $. With the increase of the duct aspect ratio $A$, the critical Rayleigh numbers for these four pairs of modes decrease and closely approach the critical value ${\mathit{Ra}}_{c} = 1743. 894$ obtained in a two-dimensional situation, one of the mode (a ${S}_{l} $ mode called mode A) always remaining the dominant mode. Oscillatory longitudinal instabilities ($k\approx 0$) corresponding to either ${S}_{l} $ or ${R}_{x} $ modes have also been found. Their critical curves, globally decreasing, present oscillatory variations when the duct aspect ratio $A$ is increased, associated with an increasing number of longitudinal rolls. When a throughflow is applied, the symmetry degeneracy of the pairs of travelling transverse modes is broken, giving distinct upstream and downstream modes. For small and moderate aspect ratios $A$, the overall critical Rayleigh number in the small Reynolds number range studied is only determined by the upstream transverse mode A. In contrast, for larger aspect ratios as $A= 7$, different modes are successively dominant as the Reynolds number is increased, involving both upstream and downstream transverse modes A and even the longitudinal mode.


1999 ◽  
Vol 121 (2) ◽  
pp. 126-130 ◽  
Author(s):  
K. Trulsen

The nonlinear Schro¨dinger method for water wave kinematics under two-dimensional irregular deepwater gravity waves is developed. Its application is illustrated for computation of the velocity and acceleration fields from the time-series of the surface displacement measured at a fixed horizontal position. The method is based on the assumption that the waves have small steepness and limited bandwidth.


1991 ◽  
Vol 231 ◽  
pp. 157-187 ◽  
Author(s):  
K. Nandakumar ◽  
H. J. Weinitschke

The bifurcation structure of two-dimensional, pressure-driven flows through a horizontal, rectangular duet that is heated with a uniform flux in the axial direction and a uniform temperature around the periphery is examined. The solution structure of the flow in a square duct is determined for Grashof numbers (Gr) in the range of 0 to 106 using an arclength continuation scheme. The structure is much more complicated than reported earlier by Nandakumar, Masliyah & Law (1985). The primary branch with two limit points and a hysteresis behaviour between the two-and four-cell flow structure that was computed by Nandakumar et al. is confirmed. An additional symmetric solution branch, which is disconnected from the primary branch (or rather connected via an asymmetric solution branch), is found. This has a two-cell flow structure at one end, a four-cell flow structure at the other, and three limit points are located on the path. Two asymmetric solution branches emanating from symmetry-breaking bifurcation points are also found for a square duct. Thus a much richer solution structure is found with up to five solutions over certain ranges of Or. A determination of linear stability indicates that all two-dimensional solutions develop some form of unstable mode by the time Gr is increased to about 220000. In particular, the four-cell becomes unstable to asymmetric perturbations. The paths of the singular points are tracked with respect to variation in the aspect ratio using the fold-following algorithm. Transcritical points are found at aspect ratios of 1.408 and 1.456 respectively for Prandtl numbers Pr = 0.73 and 5. Above these aspect ratios the four-cell solution is no longer on the primary branch. Some of the fold curves are connected in such a way as to form a tilted cusp. When the channel cross-section is tilted even slightly (1°) with respect to the gravity vector, the bifurcation points unfold and the two-cell solution evolves smoothly as the Grashof number is increased. The four-cell solutions then become genuinely disconnected from the primary branch. The uniqueness range in Grashof number increases with increasing tilt, decreasing aspect ratio and decreasing Prandtl number.


2014 ◽  
Vol 58 (01) ◽  
pp. 1-19
Author(s):  
Michael J. Hughes ◽  
Young T. Shen

The behavior of the force on a rudder changes significantly after the inception of stall, requiring different mathematical formulae to compute rudder forces prior-and poststall. Determining the inception angle at which stall occurs is important for predicting the rudder force on a maneuvering ship. A method to compute the inception angle of stall on a rudder is presented in this article. The theoretical formulation is based on a flow similarity approach, which relates three-dimensional rudder stall inception with two-dimensional airfoil data. Rudders are low-aspect ratio wings, and the three-dimensional lift is based on the low-aspect ratio wing theory. The two-dimensional airfoil stall data are obtained from National Advisory Committee for Aeronautics (NACA) reports. The derived theory is first validated with wind tunnel data from foils with a NACA 0015 profile of aspect ratios 1, 2, and 3. The theory is also validated with data from foils with a NACA 0012 profile and an aspect ratio of 2, 3, and 6.


1983 ◽  
Vol 4 ◽  
pp. 180-187 ◽  
Author(s):  
B. Michel ◽  
D. Blanchet

The problem of a floating ice sheet hitting a structure with a vertical face appears to be a simple one but, in fact, has only been solved for a limited number of cases. Research work on this question usually reports on an indentation coefficient which relates the average pressure on the indenter to the uniaxial crushing strength of the ice. Very few tests have been made in the brittle range of ice failure. In this particular area of study, this paper reports on 27 tests that were conducted in a cold-room water basin where controlled S2 floating ice sheets were produced with a surface area of 4 × 4 m, three sides being fully restrained and the other, freely float! no, being submitted to the impact of the moving indenter. All tests were carried out at computed indentation rates varying from 0.017 to 0.34 s-1. In this range this ice would normally be considered to act as a brittle material. The thickness of the ice sheets varied from 1.2 to 9.0 cm and the indenter width from 5 cm to 1 m. Overall, the aspect ratio relating these two parameters could be varied from 0.5 to 83.Results have shown that for aspect ratios <5, there was an important oscillatory effect which caused the formation of pi asti fi ed triangles in front of the indenter, increasing its resistance as it would under ductile conditions. Because of this plastification, an extrusion effect appeared in front of the indenter as the broken ice crystals were blown up and down in front of the fast-moving indenter. The theory of plasticity which gives an indentation coefficient of 2.97 seems to apply in this case. Another mode of failure which occurred with aspect ratios 5 was cleavage in the plane of the ice sheet which also gives a higher indentation coefficient for S2 ice, but of the same order of magnitude as previously.For intermediate values of the aspect ratio, between 5 and 20, the theory of elasticity used by Michel (1978) seems to apply well. Shear cracks are first formed on both sides of the square indenter and control the maximum pressure when they propagate inside forming big triangles in front of it.Finally, for aspect ratios ~>20, buckling of the ice occurs, either after or at the same time as the formation of wedges, together with a reduction in the indentation coefficient to a value close to that given by the theory of buckling of a truncated 45° wedge with a hinged edge.


Sign in / Sign up

Export Citation Format

Share Document