Multi-Modal Forcing of the Turbulent Separated Shear Flow Past a Rib

2004 ◽  
Vol 126 (1) ◽  
pp. 22-31 ◽  
Author(s):  
P. K. Panigrahi ◽  
S. Acharya

Experiments have been conducted to study the development of flow behind a surface mounted rib under different phase controlled excitation. Single mode excitation and multi-mode excitation with different relative phases are studied. The results presented include the coherent and random components of the turbulent energy and shear stresses, the energy exchange with the mean flow and between the modes, and the phase decorrelation of the coherent components. The fundamental-subharmonic excitation does not provide any significant improvements in the shear layer growth over the fundamental excitation. The shear layer growth correlates with the subharmonic mode development. The large scale structures are significant even after the reattachment region as evident from the magnitude of the coherent components of the turbulent energy and the shear stress. The binary exchange terms are significant in the near-field region whose sign is phase dependent, i.e., it reverses its sign based on the phase difference between the fundamental and 1st subharmonic mode. The location of the fundamental and subharmonic peaks are different from the peak location of their respective energy exchange with the mean flow; this is attributed to the significance of the binary energy exchange between the fundamental and the subharmonic mode in this region. The excitation regularizes the flow leading to low phase jitter in the near field region. The origin and development of phase decorrelation is attributed primarily to the subharmonic instability.

2008 ◽  
Vol 606 ◽  
pp. 27-49 ◽  
Author(s):  
I. ALBAYRAK ◽  
E. J. HOPFINGER ◽  
U. LEMMIN

Experimental results are presented of the mean flow and turbulence characteristics in the near field of a plane wall jet issuing from a nozzle onto flat and concave walls consisting of fixed sand beds. This is a flow configuration of interest for sediment erosion, also referred to as scouring. The measurements were made with an acoustic profiler that gives access to the three components of the instantaneous velocities. For the flat-wall flow, it is shown that the outer-layer spatial growth rate and the maxima of the Reynolds stresses approach the values accepted for the far field of a wall jet at a downstream distance x/b0 ≈ 8. These maxima are only about half the values of a plane free jet. This reduction in Reynolds stresses is also observed in the shear-layer region, x/b0 < 6, where the Reynolds shear stress is about half the value of a free shear layer. At distances x/b0 > 11, the maximum Reynolds shear stress approaches the value of a plane free jet. This change in Reynolds stresses is related to the mean vertical velocity that is negative for x/b0 < 8 and positive further downstream. The evolution of the inner region of the wall jet is found to be in good agreement with a previous model that explicitly includes the roughness length.On the concave wall, the mean flow and the Reynolds stresses are drastically changed by the adverse pressure gradient and especially by the development of Görtler vortices. On the downslope side of the scour hole, the flow is nearly separating with the wall shear stress tending to zero, whereas on the upslope side, the wall-friction coefficient is increased by a factor of about two by Görtler vortices. These vortices extend well into the outer layer and, just above the wall, cause a substantial increase in Reynolds shear stress.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


2021 ◽  
Vol 929 ◽  
Author(s):  
N. Agastya Balantrapu ◽  
Christopher Hickling ◽  
W. Nathan Alexander ◽  
William Devenport

Experiments were performed over a body of revolution at a length-based Reynolds number of 1.9 million. While the lateral curvature parameters are moderate ( $\delta /r_s < 2, r_s^+>500$ , where $\delta$ is the boundary layer thickness and r s is the radius of curvature), the pressure gradient is increasingly adverse ( $\beta _{C} \in [5 \text {--} 18]$ where $\beta_{C}$ is Clauser’s pressure gradient parameter), representative of vehicle-relevant conditions. The mean flow in the outer regions of this fully attached boundary layer displays some properties of a free-shear layer, with the mean-velocity and turbulence intensity profiles attaining self-similarity with the ‘embedded shear layer’ scaling (Schatzman & Thomas, J. Fluid Mech., vol. 815, 2017, pp. 592–642). Spectral analysis of the streamwise turbulence revealed that, as the mean flow decelerates, the large-scale motions energize across the boundary layer, growing proportionally with the boundary layer thickness. When scaled with the shear layer parameters, the distribution of the energy in the low-frequency region is approximately self-similar, emphasizing the role of the embedded shear layer in the large-scale motions. The correlation structure of the boundary layer is discussed at length to supply information towards the development of turbulence and aeroacoustic models. One major finding is that the estimation of integral turbulence length scales from single-point measurements, via Taylor's hypothesis, requires significant corrections to the convection velocity in the inner 50 % of the boundary layer. The apparent convection velocity (estimated from the ratio of integral length scale to the time scale), is approximately 40 % greater than the local mean velocity, suggesting the turbulence is convected much faster than previously thought. Closer to the wall even higher corrections are required.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Yuanchao Li ◽  
Huang Chen ◽  
Joseph Katz

Modeling of turbulent flows in axial turbomachines is challenging due to the high spatial and temporal variability in the distribution of the strain rate components, especially in the tip region of rotor blades. High-resolution stereo-particle image velocimetry (SPIV) measurements performed in a refractive index-matched facility in a series of closely spaced planes provide a comprehensive database for determining all the terms in the Reynolds stress and strain rate tensors. Results are also used for calculating the turbulent kinetic energy (TKE) production rate and transport terms by mean flow and turbulence. They elucidate some but not all of the observed phenomena, such as the high anisotropy, high turbulence levels in the vicinity of the tip leakage vortex (TLV) center, and in the shear layer connecting it to the blade suction side (SS) tip corner. The applicability of popular Reynolds stress models based on eddy viscosity is also evaluated by calculating it from the ratio between stress and strain rate components. Results vary substantially, depending on which components are involved, ranging from very large positive to negative values. In some areas, e.g., in the tip gap and around the TLV, the local stresses and strain rates do not appear to be correlated at all. In terms of effect on the mean flow, for most of the tip region, the mean advection terms are much higher than the Reynolds stress spatial gradients, i.e., the flow dynamics is dominated by pressure-driven transport. However, they are of similar magnitude in the shear layer, where modeling would be particularly challenging.


2018 ◽  
Vol 40 ◽  
pp. 05039
Author(s):  
Priscilla Williams ◽  
Vesselina Roussinova ◽  
Ram Balachandar

This paper focuses on the turbulence structure in a non-uniform, gradually varied, sub-critical open channel flow (OCF) on a rough bed. The flow field is analysed under accelerating, near-uniform and decelerating conditions. Information for the flow and turbulence parameters was obtained at multiple sections and planes using two different techniques: two-component laser Doppler velocimetry (LDV) and particle image velocimetry (PIV). Different outer region velocity scaling methods were explored for evaluation of the local friction velocity. Analysis of the mean velocity profiles showed that the overlap layer exists for all flow cases. The outer layer of the decelerated velocity profile was strongly affected by the pressure gradient, where a large wake was noted. Due to the prevailing nature of the experimental setup it was found that the time-averaged flow quantities do not attained equilibrium conditions and the flow is spatially heterogeneous. The roughness generally increases the friction velocity and its effect was stronger than the effect of the pressure gradient. It was found that for the decelerated flow section over a rough bed, the mean flow and turbulence intensities were affected throughout the flow depth. The flow features presented in this study can be used to develop a model for simulating flow over a block ramp. The effect of the non-uniformity and roughness on turbulence intensities and Reynolds shear stresses was further investigated.


1967 ◽  
Vol 27 (4) ◽  
pp. 657-689 ◽  
Author(s):  
R. E. Kelly

In experiments concerning the instability of free shear layers, oscillations have been observed in the downstream flow which have a frequency exactly half that of the dominant oscillation closer to the origin of the layer. The present analysis indicates that the phenomenon is due to a secondary instability associated with the nearly periodic flow which arises from the finite-amplitude growth of the fundamental disturbance.At first, however, the stability of inviscid shear flows, consisting of a non-zero mean component, together with a component periodic in the direction of flow and with time, is investigated fairly generally. It is found that the periodic component can serve as a means by which waves with twice the wavelength of the periodic component can be reinforced. The dependence of the growth rate of the subharmonic wave upon the amplitude of the periodic component is found for the case when the mean flow profile is of the hyperbolic-tangent type. In order that the subharmonic growth rate may exceed that of the most unstable disturbance associated with the mean flow, the amplitude of the streamwise component of the periodic flow is required to be about 12 % of the mean velocity difference across the shear layer. This represents order-of-magnitude agreement with experiment.Other possibilities of interaction between disturbances and the periodic flow are discussed, and the concluding section contains a discussion of the interactions on the basis of the energy equation.


1994 ◽  
Vol 116 (4) ◽  
pp. 586-596 ◽  
Author(s):  
P. L. Andrew ◽  
Wing-fai Ng

The turbulent character of the supersonic wake of a linear cascade of fan airfoils has been studied using a two-component laser-doppler anemometer. The cascade was tested in the Virginia Polytechnic Institute and State University intermittent wind tunnel facility, where the Mach and Reynolds numbers were 2.36 and 4.8 × 106, respectively. In addition to mean flow measurements, Reynolds normal and shear stresses were measured as functions of cascade incidence angle and streamwise locations spanning the near-wake and the far-wake. The extremities of profiles of both the mean and turbulent wake properties´ were found to be strongly influenced by upstream shock-boundary -layer interactions, the strength of which varied with cascade incidence. In contrast, the peak levels of turbulence properties within the shear layer were found to be largely independent of incidence, and could be characterized in terms of the streamwise position only. The velocity defect turbulence level was found to be 23 percent, and the generally accepted value of the turbulence structural coefficient of 0.30 was found to be valid for this flow. The degree of similarity of the mean flow wake profiles was established, and those profiles demonstrating the most similarity were found to approach a state of equilibrium between the mean and turbulent properties. In general, this wake flow may be described as a classical free shear flow, upon which the influence of upstream shock-boundary-layer interactions has been superimposed.


Author(s):  
Masaki Yamagishi ◽  
Tomoko Togano ◽  
Shinichi Tashiro

The vortex structures in a separated region are generated by the motion of the separated shear layer caused by the introduction of periodic fluctuation. The main cause of the motion of the separated shear layer is the external fluctuation with the characteristic frequency. In order to investigate the principal motion of the velocity field, phase averaging was conducted to the velocity signals obtained by single hot-wire measurement. In phase averaging, wavelet analysis was applied to obtain the dominant frequency and the characteristic phase in the fluctuation. The profiles and the contours of the phase-averaged velocity could be found and discussed. The profiles vary dynamically at each phase and show the periodic motion of the shear layer. The separated shear layer flutters with the external fluctuation in the mean flow. If the suitable frequency is selected in the external fluctuation, the separated region disappears in almost all each phases owing to the depression of the shear layer near the wall.


In this problem a mean turbulent shear layer originally exists, homogeneous in the streamwise direction, formed perhaps by previous instabilities, but in equilibrium with the fine-grained turbulence. At a given time, a large eddy of a fixed horizontal wavenumber is initiated. We study the subsequent time development of the non-equilibrium interactions between the three components of flow as they adjust towards ultimate simultaneous equilibrium, using the integrated energy-balance conservation equations to derive the amplitude equations. This necessarily involves the usual averaging procedure and a conditional or phase-averaging procedure by which the large structure motion is educed from the total fluctuations. In general, the mean flow growth is due to the energy transfer to both fluctuating components, the large eddy gains energy from the mean motion and exchanges energy with the fine-grained turbulence, while the fine-grained turbulence gains energy from the mean flow and exchanges with the large eddy and converts its energy to heat through viscous dissipation of the smallest scales. The closure problem is obtained via the shape assumptions which enter into the interaction integrals. The situation in which the fine-grained turbulent kinetic energy production and viscous dissipation are in local balance is considered, the displacement from equilibrium being due only to the energy transfer from the large eddy. The large eddy shape is taken to be two-dimensional, instability-wavelike, with its vorticity axis perpendicular to the direction of the mean outer stream. Prior to averaging, detailed but approximate calculations of the wave-induced turbulent Reynolds stresses are obtained; the product of these stresses with the appropriate large-eddy rates of strain give the energy transfer mechanism between the two disparate scales of fluctuations. Coupled, nonlinear amplitude or energy density equations for the three components of motion are obtained, the coefficients of which are the interaction integrals guided by the shape assumptions. It is found that for the special case of parallel flow, the energy of the large eddy first undergoes a hydrodynamic-instability type of amplification but eventually decays due to the energy transfer to the fine-grained turbulence, while the turbulent kinetic energy is displaced from an original level of equilibrium to a new one because of the ability of the large eddy to negotiate an indirect energy transfer from the mean flow. For the growing shear layer, approximate considerations show that if the mechanism of energy transfer from the large to the small scale is eventually weakened by the shear layer growth compared to the large-eddy production mechanism so that the amplification and decay process repeats, ‘bursts’ of the remnant of the same large eddy will occur repeatedly until an ultimate equilibrium is reached among the three interacting components of motion. However, for the large eddy whose wavenumber corresponds to that of the initially most amplified case, the ‘bursting’ phenomenon is much less pronounced and equilibrium is very nearly reached at the end of the very first ‘burst’.


Sign in / Sign up

Export Citation Format

Share Document