An Experimental Study of Particle Damping for Beams and Plates

2004 ◽  
Vol 126 (1) ◽  
pp. 141-148 ◽  
Author(s):  
Zhiwei Xu ◽  
Michael Yu Wang ◽  
Tianning Chen

This paper describes an experimental investigation of a particle damping method for a beam and a plate. Tungsten carbide particles are embedded within longitudinal (and latitudinal) holes drilled in the structure, as a simple and passive means for vibration suppression. Unlike in traditional damping materials, mechanisms of energy dissipation of particle damping are highly nonlinear and primarily related to friction and impact phenomena. Experiments are conducted with a number of arrangements of the packed particles including different particle sizes and volumetric packing ratios. The results show that the particle damping is remarkably effective and that strong attenuations are achieved within a broad frequency range. The effects of the system parameters including particle size, packing ratio and particle material are studied by broadband and narrowband random excitations. The experimental results confirm a numerical prediction that shear friction in the longitudinal (and the latitudinal) directions is effective as the major contributing mechanism of damping in the case. Another unique feature of linear decay in free vibrations is also observed in this case of particle damping.

Author(s):  
Zhiwei Xu ◽  
Michael Yu Wang ◽  
Tianning Chen

As a simple and passive means, particle damping provides vibration suppression with granular particles embedded within their containing holes in a vibrating structure. Unlike in traditional damping materials, mechanisms of energy dissipation of particle damping are primarily related to friction and impact phenomena which are highly nonlinear. In the research work reported in the paper we investigate an elastic beam structure with drilled longitudinal holes filled with damping particles. Our focus is on the form of damping due to shear friction induced by strain gradient along the length of the structure. We present physical models to take into account of the shear frictional forces between particle layers and impacts of the particles with the containing holes. A numerical procedure is presented to predict the damping effect. Experimental tests of the beam for various different damping treatments are also conducted. Model predictions are validated by experimental results.


2016 ◽  
Vol 139 (1) ◽  
Author(s):  
Shilong Li ◽  
J. Tang

Particle damping has the promising potential for attenuating unwanted vibrations in harsh environments especially under high temperatures where conventional damping materials would not be functional. Nevertheless, a limitation of simple particle damper (PD) configuration is that the damping effect is insignificant if the local displacement/acceleration is low. In this research, we investigate the performance of a tuned mass particle damper (TMPD) in which the particle damping mechanism is integrated into a tuned mass damper (TMD) configuration. The essential idea is to combine the respective advantages of these two damping concepts and in particular to utilize the tuned mass damper configuration as a motion magnifier to amplify the energy dissipation capability of particle damper when the local displacement/acceleration of the host structure is low. We formulate a first-principle-based dynamic model of the integrated system and analyze the particle motion by using the discrete element method (DEM). We perform systematic parametric studies to elucidate the damping effect and energy dissipation mechanism of a TMPD. We demonstrate that a TMPD can provide significant vibration suppression capability, essentially outperforming conventional particle damper.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
Zhaowang Xia ◽  
Xiandong Liu ◽  
Yingchun Shan

Particle damper comprises granular particle enclosed in a container within a vibrating structure. The performance of particle damper is strongly nonlinear whose energy dissipation is derived from a combination of mechanisms including plastic collisions and friction between particles or particles and cavity walls. Particle damper containing suitable materials may be effective in a wider temperature range than most other types of passive damping devices. Therefore, it may be applied in extreme temperature environments where most conventional dampers would fail. It may also attenuate vibrations over a broad range of frequencies and cost less. Researches have indicated that particle damper could be a viable option for extreme environment applications. However, to date, no effort has come forward the can prove analytically or numerically that the particle damping is a viable solution for vibration suppression under centrifugal forces. In this paper, a coupling simulation algorithm based on the discrete element method and finite element method and the results of simulative studies aimed at understanding the effects of parameters of particle damper under centrifugal forces are presented. And the results show that the presented coupling simulation algorithm is effective and the analyses of dynamic feature of a plate with particle dampers under centrifugal loads are reasonable.


2020 ◽  
Vol 42 (15) ◽  
pp. 2984-3001
Author(s):  
Hossein Rouzegar ◽  
Alireza Khosravi ◽  
Pouria Sarhadi

In this paper, vibration suppression and attitude control for the formation flight of flexible satellites using optimally tuned on-off SDRE (state-dependent Riccati equation) approach is discussed. A formation consisting of flexible satellites has highly nonlinear dynamics and the corresponding satellites are subject to vibrations as well as uncertainties due to the practical conditions. Vibrations that are mainly caused by flexible modes of the satellites disorganize the coordination and hinder the formation stability as well as decreasing its performance and lifetime. Hence, flexibility should be considered in formation model and the coordination control needs to address such challenges. Owing to capabilities of SDRE approach for nonlinear systems, it is used as the coordination control. Satellites are assumed to be equipped with thrusters as their actuators which requires the control to be applied as on-off pulses. To this end, an algorithm is suggested to efficiently convert SDRE control into on-off pulses. For optimal tuning of the controller, the particle swarm optimization (PSO) algorithm is employed. Stability of the system has also been analyzed via a Lyapunov-based approach utilizing the region of attraction concept. The proposed on-off SDRE approach has shown to effectively suppress the vibrations in the presence of uncertainties leading to the accurate coordination of the whole formation while consuming less energy. Simulation results show the capability, efficiency, robustness and stability of the suggested approach.


Author(s):  
Shilong Li ◽  
J. Tang

Particle damping has the promising potential for attenuating the unwanted vibrations in harsh environment. However, the damping performance of the conventional particle damper (PD) may be ineffective, especially when the acceleration of the particle damper is less than gravitational acceleration (1g). In order to improve the damping performance of the traditional PD, the tuned mass particle damper (TMPD) which utilizes the advantages of both the tuned mass damper and particle damper is investigated in this paper. The TMPD can act as the tuned mass damper to not only absorb the vibration of the primary structure but also amplify the motions of the particles in the enclosure, which will significantly enhance the particle damping effect. To analyze the damping effect of the TMPD, a new coupling method to integrate the TMPD into the continuous host structure is first developed. The 3D discrete element method is then adopted to accurately describe and analyze the motion of particles in the enclosure. Furthermore, the analysis is validated by correlating the numerical and experimental results. With the new method as basis, detailed numerical studies are further carried out to verify the damping effectiveness of the TMPD compared with conventional PD under various excitation levels. The results demonstrate that the TMPD can significantly improve the damping effect of the conventional PD on suppressing the vibration of the primary structure under both the low and high excitation levels.


2004 ◽  
Vol 11 (5-6) ◽  
pp. 647-664 ◽  
Author(s):  
Zhi Wei Xu ◽  
K.W. Chan ◽  
W.H. Liao

Particle damping is an effective vibration suppression method. The purpose of this paper is to develop an empirical method for particle damping design based on extensive experiments on three structural objects – steel beam, bond arm and bond head stand. The relationships among several key parameters of structure/particles are obtained. Then the procedures with the use of particle damping are proposed to provide guidelines for practical applications. It is believed that the results presented in this paper would be helpful to effectively implement the particle damping for various structural systems for the purpose of vibration suppression.


2004 ◽  
Vol 126 (2) ◽  
pp. 202-211 ◽  
Author(s):  
Kuanmin Mao ◽  
Michael Yu Wang ◽  
Zhiwei Xu ◽  
Tianning Chen

Particle damping is a technique of providing damping with granular particles embedded within small holes in a vibrating structure. The particles absorb kinetic energy through particle-to-wall and particle-to-particle frictional collisions. While the concept of particle damping seems to be simple and it has been used successfully in many fields for vibration reduction, it is difficult to predict the damping characteristics due to complex collisions in the dense particle flow. In this paper, we utilize the 3D discrete element method (DEM) for computer simulation and characterization of particle damping. With the DEM modeling tool validated with experimental results, it is shown that the particle damping can achieve a very high value of specific damping capacity. Furthermore, simulations provide information of particle motions within the container hole during three different regions and help explain their associated damping characteristics. The particle damping is a combination of the impact and the friction damping. The damping is found to be highly nonlinear as the rate of energy dissipation depends on amplitude. Particularly, the damping effect results in a linear decay in amplitude over a finite period of time. These characteristics are examined with respect to a simple single-mass impact damper and a dry-friction damper. It is concluded that the particle damping is a mix of these two damping mechanisms. It is further shown that the relative significance of these damping mechanisms depends on a particular arrangement of the damper. This study represents an effort towards a deeper understanding of particle damping to provide a comprehensive methodology for its analysis and design.


2008 ◽  
Vol 55-57 ◽  
pp. 357-360 ◽  
Author(s):  
S. Chakthin ◽  
Nuchthana Poolthong ◽  
Ruangdaj Tongsri

Sintered Fe-5 wt. % carbide (SiC or TiC) composites have been prepared via a powder metallurgy (P/M) route. Two carbide particle sizes, < 20 µm and 20-32 µm, were mixed with Fe powder. The powder mixtures were compacted and sintered at 3 different temperatures, 1100, 1150 and 1200 °C. Microstructures of sintered Fe-5 wt. % SiC composites showed evidence of SiC decomposition. The decomposed Si and C atoms diffused into Fe particles resulting in formation of solid solution of Si and C in Fe during sintering. During cooling, the solid solution of C in Fe decomposed to pearlite structure (ferrite and cementite (Fe3C) lamellar structure). Microstructures of sintered Fe-5 wt. % TiC composites showed no evidence of TiC decomposition at the investigated sintering temperatures. Because of the reaction between SiC and Fe, tensile strength and hardness of the sintered Fe-SiC composites were higher than those of the sintered Fe. Experimental results showed that strength and hardness of the sintered Fe-SiC composites increased with increasing sintering temperature and with decreasing SiC particle size. In contrast, mechanical properties of the sintered Fe-TiC composites were inferior to those of the sintered Fe. The reason of poor mechanical properties may be attributed to poor bonding between Fe and TiC particles.


Sign in / Sign up

Export Citation Format

Share Document