Nonlinear Hydrodynamic Forces on Flexible Structures: A Combined-Force Model

2004 ◽  
Vol 126 (1) ◽  
pp. 78-83 ◽  
Author(s):  
Iftekhar Anam ◽  
Jose M. Roesset

A new combined-force method is suggested to approximate the second-order difference frequency forces from diffraction theory (Φ2 theory) with less computational effort. The new method is formulated by combining two limiting cases of the Φ2 theory; i.e., Newman’s approximation and the slender Φ2 theory. Numerical results show that the new method reproduces the individual nonlinear effects of the Φ2 theory better than the existing approximations. Results of this work also show the limitations of Morison’s equation as the slender-body counterpart of the diffraction theory for nonlinear problems.

2012 ◽  
Vol 170-173 ◽  
pp. 2924-2928
Author(s):  
Sheng Biao Chen ◽  
Yun Zhi Tan

In order to measure the water drainage volume in soil mechanical tests accurately, it develop a new method which is based on principles of optics. And from both physical and mathematic aspects, it deduces the mathematic relationship between micro change in displacement and the increment projected on screen. The result shows that total reflection condition is better than refraction condition. What’s more, the screen could show the water volume micro variation clearly, so it can improve the accuracy of measurement.


2020 ◽  
Vol 11 (1) ◽  
pp. 241
Author(s):  
Juliane Kuhl ◽  
Andreas Ding ◽  
Ngoc Tuan Ngo ◽  
Andres Braschkat ◽  
Jens Fiehler ◽  
...  

Personalized medical devices adapted to the anatomy of the individual promise greater treatment success for patients, thus increasing the individual value of the product. In order to cater to individual adaptations, however, medical device companies need to be able to handle a wide range of internal processes and components. These are here referred to collectively as the personalization workload. Consequently, support is required in order to evaluate how best to target product personalization. Since the approaches presented in the literature are not able to sufficiently meet this demand, this paper introduces a new method that can be used to define an appropriate variety level for a product family taking into account standardized, variant, and personalized attributes. The new method enables the identification and evaluation of personalizable attributes within an existing product family. The method is based on established steps and tools from the field of variant-oriented product design, and is applied using a flow diverter—an implant for the treatment of aneurysm diseases—as an example product. The personalization relevance and adaptation workload for the product characteristics that constitute the differentiating product properties were analyzed and compared in order to determine a tradeoff between customer value and personalization workload. This will consequently help companies to employ targeted, deliberate personalization when designing their product families by enabling them to factor variety-induced complexity and customer value into their thinking at an early stage, thus allowing them to critically evaluate a personalization project.


2021 ◽  
pp. 109442812199190
Author(s):  
Mikko Rönkkö ◽  
Eero Aalto ◽  
Henni Tenhunen ◽  
Miguel I. Aguirre-Urreta

Transforming variables before analysis or applying a transformation as a part of a generalized linear model are common practices in organizational research. Several methodological articles addressing the topic, either directly or indirectly, have been published in the recent past. In this article, we point out a few misconceptions about transformations and propose a set of eight simple guidelines for addressing them. Our main argument is that transformations should not be chosen based on the nature or distribution of the individual variables but based on the functional form of the relationship between two or more variables that is expected from theory or discovered empirically. Building on a systematic review of six leading management journals, we point to several ways the specification and interpretation of nonlinear models can be improved.


Author(s):  
Sankirti Sandeep Shiravale ◽  
R. Jayadevan ◽  
Sanjeev S. Sannakki

Text present in a camera captured scene images is semantically rich and can be used for image understanding. Automatic detection, extraction, and recognition of text are crucial in image understanding applications. Text detection from natural scene images is a tedious task due to complex background, uneven light conditions, multi-coloured and multi-sized font. Two techniques, namely ‘edge detection' and ‘colour-based clustering', are combined in this paper to detect text in scene images. Region properties are used for elimination of falsely generated annotations. A dataset of 1250 images is created and used for experimentation. Experimental results show that the combined approach performs better than the individual approaches.


2014 ◽  
Vol 941-944 ◽  
pp. 2219-2223 ◽  
Author(s):  
Guo Juan Zhao ◽  
Lei Zhang ◽  
Shi Jun Ji ◽  
Xin Wang

In this paper, a new method is presented for the identification of machine tool component errors. Firstly, the Non-Uniform Rational B-spline (NURBS) is established to represent the geometric component errors. The individual geometric errors of the motion parts are measured by laser interferometer. Then, the volumetric error for a machine tool with three motion parts is modeled based on the screw theory. Finally, the simulations and experiments are conducted to confirm the validity of the proposed method.


2010 ◽  
Vol 15 (4) ◽  
pp. 491-504 ◽  
Author(s):  
Abdul M. Siddiqui ◽  
Tahira Haroon ◽  
Saira Bhatti ◽  
Ali R. Ansari

The objective of this paper is to compare two methods employed for solving nonlinear problems, namely the Adomian Decomposition Method (ADM) and the Homotopy Perturbation Method (HPM). To this effect we solve the Navier‐Stokes equations for the unsteady flow between two circular plates approaching each other symmetrically. The comparison between HPM and ADM is bench‐marked against a numerical solution. The results show that the ADM is more reliable and efficient than HPM from a computational viewpoint. The ADM requires slightly more computational effort than the HPM, but it yields more accurate results than the HPM.


Author(s):  
Xiaohong Lu ◽  
Haixing Zhang ◽  
Zhenyuan Jia ◽  
Yixuan Feng ◽  
Steven Y. Liang

Micro-milling tool breakage has become a bottleneck for the development of micro-milling technology. A new method to predict micro-milling tool breakage based on theoretical model is presented in this paper. Based on the previously built micro-milling force model, the bending stress of the micro-milling cutter caused by the distributed load along the spiral cutting edge is calculated; Then, the ultimate stress of carbide micro-milling tool is obtained by experiments; Finally, the bending stress at the dangerous part of the micro-milling tool is compared with the ultimate stress. Tool breakage curves are drawn with feed per tooth and axial cutting depth as horizontal and vertical axes respectively. The area above the curve is the tool breakage zone, and the area below the curve is the safety zone. The research provides a new method for the prediction of micro-milling tool breakage, and therefore guides the cutting parameters selection in micro-milling.


1998 ◽  
Vol 42 (03) ◽  
pp. 174-186
Author(s):  
C. J. Garrison

A method is presented for evaluation of the motion of long structures composed of interconnected barges, or modules, of arbitrary shape. Such structures are being proposed in the construction of offshore airports or other large offshore floating structures. It is known that the evaluation of the motion of jointed or otherwise interconnected modules which make up a long floating structure may be evaluated by three dimensional radiation/diffraction analysis. However, the computing effort increases rapidly as the complexity of the geometric shape of the individual modules and the total number of modules increases. This paper describes an approximate method which drastically reduces the computational effort without major effects on accuracy. The method relies on accounting for hydrodynamic interaction effects between only adjacent modules within the structure rather than between all of the modules since the near-field interaction is by far the more important. This approximation reduces the computational effort to that of solving the two-module problem regardless of the total number of modules in the complete structure.


Author(s):  
Sathya Prasad Mangalaramanan

Abstract An accompanying paper provides the theoretical underpinnings of a new method to determine statically admissible stress distributions in a structure, called Bounded elastic moduli multiplier technique (BEMMT). It has been shown that, for textbook cases such as thick cylinder, beam, etc., the proposed method offers statically admissible stress distributions better than the power law and closer to elastic-plastic solutions. This paper offers several examples to demonstrate the robustness of this method. Upper and lower bound limit loads are calculated using iterative elastic analyses using both power law and BEMMT. These results are compared with the ones obtained from elastic-plastic FEA. Consistently BEMMT has outperformed power law when it comes to estimating lower bound limit loads.


2015 ◽  
Vol 15 (7) ◽  
pp. 88-98
Author(s):  
J. Dezert ◽  
A. Tchamova ◽  
P. Konstantinova

Abstract The main purpose of this paper is to apply and to test the performance of a new method, based on belief functions, proposed by Dezert et al. in order to evaluate the quality of the individual association pairings provided in the optimal data association solution for improving the performances of multisensor-multitarget tracking systems. The advantages of its implementation in an illustrative realistic surveillance context, when some of the association decisions are unreliable and doubtful and lead to potentially critical mistake, are discussed. A comparison with the results obtained on the base of Generalized Data Association is made.


Sign in / Sign up

Export Citation Format

Share Document