Nonlinear Dynamic Modeling of Gear-Shaft-Disk-Bearing Systems Using Finite Elements and Describing Functions

2003 ◽  
Vol 126 (3) ◽  
pp. 534-541 ◽  
Author(s):  
Rafiq Maliha ◽  
Can U. Dogˇruer ◽  
H. Nevzat O¨zgu¨ven

This study presents a new nonlinear dynamic model for a gear-shaft-disk-bearing system. A nonlinear dynamic model of a spur gear pair is coupled with linear finite element models of shafts carrying them, and with discrete models of bearings and disks. The nonlinear elasticity term resulting from backlash is expressed by a describing function, and a method developed in previous studies to determine multi harmonic responses of nonlinear multi-degree-of-freedom systems is employed for the solution. The excitations considered in the model are external static torque and internal excitation caused by mesh stiffness variation, gear errors and gear tooth profile modifications. The model suggested and the solution method presented combine the versatility of modeling a shaft-bearing-disk system that can have any configuration without a limitation to the total degree of freedom, with the accuracy of a nonlinear gear mesh interface model that allows to predict jumps and double solutions in frequency response. Thus any single stage gear mesh configuration can be modeled easily and accurately. With the model developed it is possible to calculate dynamic gear loads, dynamic bearing forces, dynamic transmission error and bearing displacements. Theoretical results obtained by using the method suggested are compared with the experimental data available in literature, as well as with the theoretical values calculated by employing a previously developed nonlinear single degree of freedom model.

Author(s):  
Rafiq Maliha ◽  
Can U. Dog˘ruer ◽  
H. Nevzat O¨zgu¨ven

This study presents a new nonlinear dynamic model for a gear-shaft-disk-bearing system. A nonlinear dynamic model of a spur gear pair is coupled with linear finite element models of shafts carrying them, and with discrete models of bearings and disks. The nonlinear elasticity term resulting from backlash is expressed by a describing function, and a method developed in previous studies to determine the harmonic responses of nonlinear multi degree of freedom systems is employed for the solution. The code developed, Nonlinear Geared Rotor Dynamics (NLGRD), combines the versatility of modeling a shaft-bearing-disk system that can have any configuration, with the accuracy of an advanced nonlinear gear mesh interface model. Thus any single stage gear mesh configuration can be modeled easily and accurately. NLGRD is capable of calculating dynamic gear loads, dynamic bearing forces, bearing displacements and making modal analysis of the corresponding linear system. Theoretical results obtained by NLGRD are compared with the experimental data available in literature.


2021 ◽  
Vol 12 (1) ◽  
pp. 361-373
Author(s):  
Dawei Liu ◽  
Zhenzhen Lv ◽  
Guohao Zhao

Abstract. A noncircular face gear (NFG) conjugated with a pinion is a new type of face gear which can transmit variable velocity ratio and in which two time-varying excitations exist, namely the meshing stiffness excitation and instantaneous center excitation. Considering the tooth backlash, static transmission error and multifrequency parametric excitation, a nonlinear dynamic model of the NFG pair is presented. Based on the harmonic balance method and discrete Fourier transformation, a semi-analytic approach for the nonlinear dynamic model is given to analyze the dynamic behaviors of the NFG. Results demonstrate that, with increase in the eccentric ratio, input velocity and error amplitude, the NFG will undergo a non-rattle, unilateral rattle and bilateral rattle state in succession, and a jump phenomenon will appear in the dynamic responses when the rattle state of the gears is transformed from unilateral rattle to bilateral rattle.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Zhibo Geng ◽  
Ke Xiao ◽  
Junyang Li ◽  
Jiaxu Wang

Abstract In this study, a nonlinear dynamic model of a spur gear transmission system with non-uniform wear is proposed to analyze the interaction between surface wear and nonlinear dynamic characteristics. A quasi-static non-uniform wear model is presented, with consideration of the effects of operating time on mesh stiffness and gear backlash. Furthermore, a nonlinear dynamic model with six degrees-of-freedom is established considering surface friction, time-varying gear backlash, time-varying mesh stiffness, and eccentricity, and the Runge–Kutta method applied to solve this model. The bifurcation and chaos in the proposed dynamic model with the change of the operating time and the excitation frequency are investigated by bifurcation and spectrum waterfall diagrams to analyze the bifurcation characteristics and the dimensionless mesh force. It is found that surface wear is generated with a change in operating time and affects the nonlinear dynamic characteristics of the spur gear system. This study provides a better understanding of nonlinear dynamic characteristics of gear transmission systems operating under actual conditions.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Zhong Wang ◽  
Lei Zhang ◽  
Yuan-Qing Luo ◽  
Chang-Zheng Chen

In the actual measurements, vibration and noise spectrum of gear pair often exhibits sidebands around the gear mesh harmonic orders. In this study, a nonlinear time-varying dynamic model of spur gear pair was established to predict the modulation sidebands caused by the AM-FM modulation internal excitation. Here, backlash, modulation time-varying mesh stiffness, and modulation transmission error are considered. Then the undamped natural mode was studied. Numerical simulation was made to reveal the dynamic characteristic of a spur gear under modulation condition. The internal excitation was shown to exhibit obvious modulation sideband because of the modulation time-varying mesh stiffness and modulation transmission error. The Runge-Kutta method was used to solve the equations for analyzing the dynamic characteristics with the effect of modulation internal excitation. The result revealed that the response under modulation excitation exhibited obvious modulation sideband. The response under nonmodulation condition was also calculated for comparison. In addition, an experiment was done to verify the prediction of the modulation sidebands. The calculated result was consistent with the experimental result.


2021 ◽  
Vol 1820 (1) ◽  
pp. 012038
Author(s):  
Chen Zhang ◽  
Xuew Liu ◽  
Xingl Shi ◽  
Xiaom Ling

Author(s):  
Nabih Feki ◽  
Maroua Hammami ◽  
Olfa Ksentini ◽  
Mohamed Slim Abbes ◽  
Mohamed Haddar

In this work, a nonlinear dynamic model of an FZG-A10 spur gear was investigated by taking into account for the actual time-varying gear mesh stiffness and the frictional effects between meshing gear teeth to evaluate the influence of the dynamic effects on frictional gear power loss predictions. The equations of motion of the generalized translational-torsional coupled dynamic system derived from Lagrange principle was extended compared to authors’ previous work in order to account for time dependent coefficient of friction and profile errors. The dynamic response of spur gears, computed by an iterative implicit scheme of Newmark, is changed due to the presence of coefficient of friction and profile errors. A dynamic analysis was performed and the influence of frictional effect including tooth shape deviations, in particular, was scrutinized since a time-dependent coefficient of friction is deeply related to the gear surface roughness and all parameters dependent on gears error profiles are introduced in the proposed model. The predicted meshing gear power losses with constant and local friction coefficient were compared. The influence of constant and variable profile errors considered in the local coefficient of friction formulation was also studied and their corresponding root mean square (RMS) power loss was compared to the experimental results. The results using FZG A10 spur gear pairs running under several operating conditions (different loads and speeds) validate the superiority of the proposed model against previous similar models.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Jianfeng Ma ◽  
Chao Li ◽  
Lingli Cui

For the nonlinear disturbance actual issues of the model space drive mechanism two-stage spur gear system, a nonlinear dynamic model of 14-DOF (degree of freedom) two-stage spur gear with time-varying stiffness and damping was established. This model has been developed previously by the authors to access the large inertia on the dynamic response of spur gear space driving mechanism, and its effectiveness was proved by a motion simulation experiment. In this paper, the profile error (PE) and the index error (IE) were enhanced in the dynamic model. The effects of profile error, index error, and variable load torque on transmission error (TE) were analyzed, while the optimization was proposed according to the analyzed result. The peak-to-peak value of the optimized load transmission error (LTE) was reduced by 60.7%, which improved the transmission accuracy and reduced the phenomenon of disturbance. The research of nonlinear dynamical model of two-stage spur gear and the TE of the large inertia load were enriched, which provided an important reference for the actual design of the gear system.


Author(s):  
Jinyuan Tang ◽  
Siyu Chen ◽  
Changjiang Zhou

This paper develops a new nonlinear dynamic model of gear transmission on the basis of combining friction, gear mesh stiffness and backlash. In calculating friction force, the dynamic distribution of the load along the actual line of action is taken into consideration. A new period-enlargement method is proposed to set up a friction force model and a gear meshing stiffness model. The non-linear dynamic model is a non-autonomous system. Compared with the former models, the damping coefficient and stiff coefficient in this model developed by the period enlargement method is a periodic function with the same period. Thus it is easier to apply EM (energy method) or other methods for finding the approximate analytical solution of the gear transmission dynamic equations combining with time-varying damping and stiffness. Frequency response function of the nonlinear dynamic model is obtained by using harmonic balance method. Compared the analytic and numerical results of the improved nonlinear model with that of the nonlinear models in the published papers, it is shown that: (a) the former numerical simulation techniques may not work or may result in misleading answers; (b) the coexistence of several different periodic solutions and various impacts are the same with the results in formerly published papers when gear parameters are the same. Finally, the accurate solutions of all three regimes are combined to obtain the overall frequency response of the gear pair.


Author(s):  
Muhammad Nevin Anandika ◽  
Ahmet Kahraman ◽  
David Talbot

Abstract Noise and vibration performance of a gear system is critical in any engineering industry. Excessive vibrational amplitudes originated by the excitations at the gear meshes propagate to the transmission housing to cause noticeable noise, while also increasing gear tooth stresses to degrade durability. As such, gear designers must generate designs that are nominally quiet with low-vibration amplitudes. This implies a gear pair fabricated exactly to the specifications of its blue print will be acceptable for its vibration behavior. Achieving this, however, is not sufficient. As the manufacturing of gears require them to be subject to bands of tolerances afforded by the manufacturing processes employed, the designers must be concerned about variations to the performance of their presumably quite baseline designs within these tolerance bands. This research aims at demonstrating how one type of manufacturing error, random tooth spacing errors, alter the vibratory behavior of a spur gear pair. Two pairs of spur gears are tested for their dynamic transmission error performance. One gear pair with no tooth spacing errors form the baseline. The second gear pair contain an intentionally induced random sequence of spacing errors. The forced vibration responses of both gear pairs are compared within wide ranges of speed and torque. This comparison shows that there is a clear and significant impact of random spacing errors on spur gear dynamics, measurable through examination of their respective transmission error signatures. In the off-resonance regions of speed, vibration amplitudes of the random error pair are higher than the no-error baseline spur gear pair. Meanwhile, at or near resonance peaks, the presence of random spacing errors tends to lower the peak amplitudes slightly as compared to the no-error baseline spur gear pair. The presence of random spacing errors introduces substantial harmonic content that are non-mesh harmonics. This results in a broadband frequency spectrum in addition to an otherwise well-defined frequency spectrum with gear-mesh order components, pointing to an additional concern of noise quality.


2002 ◽  
Vol 124 (4) ◽  
pp. 794-804 ◽  
Author(s):  
Lin Liu ◽  
Darryll J. Pines

This paper develops an analytical model to simulate the gear mesh contact for a spur gear pair with and without tooth damage. Three common gear tooth faults are simulated including pitting, wear and root cracks. The effect of tooth face width on detection sensitivity for pitting and the effect of crack width on detection sensitivity for crack are investigated. Using static performance measures, such as transmission error, results suggest that basic gear design parameters, such as diametral pitch, pressure angle and number of teeth, may have a significant effect on damage detection sensitivity. It appears that a decrease in diametral pitch will enhance damage detection sensitivity for all the three types of damage. An increase in pressure angle or number of teeth will enhance detection sensitivity for pitting damage, but tends to decrease the sensitivity to crack or wear damage.


Sign in / Sign up

Export Citation Format

Share Document