Effects of Several Major Irreversibilities on the Thermodynamic Performance of a Regenerative MHD Power Cycle

2005 ◽  
Vol 127 (2) ◽  
pp. 103-118 ◽  
Author(s):  
Jincan Chen ◽  
S. K. Tyagi ◽  
S. C. Kaushik ◽  
V. Tiwari ◽  
Chih Wu

This communication presents the thermodynamic analysis along with a detailed parametric study of an irreversible regenerative MHD power cycle. The power output is adopted as the objective function and optimized with respect to the cycle temperature ratio for a typical set of operating parameters. The power output is found to be an increasing function of the effectiveness and the heat capacitance rates on the hot- and cold-side reservoirs, the regenerative effectiveness, and the compressor and generator efficiencies, while it is found to be a decreasing function of the working fluid heat capacitance rates and the Mach number. The effects of the cold-side effectiveness and heat capacitance rate are found to be more than those of the other side effectiveness and heat capacitance rates on the performance of the cycle. The effect of the compressor efficiency is found to be more than that of the generator efficiency on the power output while it is reverse in the case of thermal efficiency. It is also found that there is an optimum relation among the various heat capacitance rates at which the cycle attains the maximum performance.

Author(s):  
Jiaxi Xia ◽  
Jiangfeng Wang ◽  
Pan Zhao ◽  
Dai Yiping

CO2 in a transcritical CO2 cycle can not easily be condensed due to its low critical temperature (304.15K). In order to increase the critical temperature of working fluid, an effective method is to blend CO2 with other refrigerants to achieve a higher critical temperature. In this study, a transcritical power cycle using CO2-based mixtures which blend CO2 with other refrigerants as working fluids is investigated under heat source. Mathematical models are established to simulate the transcritical power cycle using different CO2-based mixtures under MATLAB® software environment. A parametric analysis is conducted under steady-state conditions for different CO2-based mixtures. In addition, a parametric optimization is carried out to obtain the optimal design parameters, and the comparisons of the transcritical power cycle using different CO2-based mixtures and pure CO2 are conducted. The results show that a raise in critical temperature can be achieved by using CO2-based mixtures, and CO2-based mixtures with R32 and R22 can also obtain better thermodynamic performance than pure CO2 in transcritical power cycle. What’s more, the condenser area needed by CO2-based mixture is smaller than pure CO2.


Energies ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4623 ◽  
Author(s):  
Liya Ren ◽  
Huaixin Wang

Compared with the basic organic and steam Rankine cycles, the organic trans-critical cycle (OTC), steam flash cycle (SFC) and steam dual-pressure cycle (SDC) can be regarded as the improved cycle configurations for the waste heat power recovery since they can achieve better temperature matching between the heat source and working fluid in the heat addition process. This study investigates and compares the thermodynamic performance of the OTC, SFC, and SDC based on the waste heat source from the cement kiln with an initial temperature of 320 °C and mass flow rate of 86.2 kg/s. The effects of the main parameters on the cycle performance are analyzed and the parameter optimization is performed with net power output as the objective function. Results indicate that the maximum net power output of SDC is slightly higher than that of SFC and the OTC using n-pentane provides a 19.74% increase in net power output over the SDC since it can achieve the higher use of waste heat and higher turbine efficiency. However, the turbine inlet temperature of the OTC is limited by the thermal stability of the organic working fluid, hence the SDC outputs more power than that of the OTC when the initial temperature of the exhaust gas exceeds 415 °C.


2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Wahiba Yaïci ◽  
Evgueniy Entchev ◽  
Pouyan Talebizadehsardari ◽  
Michela Longo

Abstract Overall, there are numerous sustainable sources of renewable, low-temperature heat, principally solar energy, geothermal energy, and energy produced from industrial wastes. Extended utilization of these low-temperature alternatives has a certain capacity of decreasing fossil fuel use with its associated very hazardous greenhouse gas emissions. Researchers have commonly recognized the organic Rankine cycle (ORC) as a feasible and suitable system to produce electrical power from renewable sources based on its advantageous use of volatile organic fluids as working fluids (WFs). Researchers have similarly shown an affinity to the exploitation of zeotropic mixtures as ORC WFs due to their capability to enhance the thermodynamic performance of ORC systems, an achievement supported by improved fits of the temperature profiles of the WF and the heat source/sink. This paper determines both the technical feasibility and the benefits of using zeotropic mixtures as WFs by means of a simulation study of an ORC system. This study analyzes the thermodynamic performance of ORC systems using zeotropic WF mixtures to produce electricity driven by low-temperature solar heat sources for use in buildings. A thermodynamic model is created with an ORC system with and without a regenerator. Five zeotropic mixtures with diverse compositions between 0 and 1 in 0.2 increments of R245fa/propane, R245fa/hexane, R245fa/heptane, pentane/hexane, and isopentane/hexane are assessed and compared with identify the best blends of mixtures that are able to produce superior efficiency in their system cycles. Results disclosed that R245fa/propane (0.4/0.6) with regenerator produces the highest net power output of 7.9 kW and cycle efficiency of 9.4% at the operating condition with a hot source temperature of 85 °C. The study also investigates the effects of the volume flow ratio, and evaporation and condensation temperature glide on the ORC’s thermodynamic performance. Following a thorough analysis of each mixture, R245fa/propane is chosen for a parametric study to examine the effects of operating factors on the system’s efficiency and sustainability index. It was found that the highest cycle efficiency and highest second law cycle efficiency of around 10.5% and 84.0%, respectively, were attained with a mass composition of 0.6/0.4 at the hot source temperature of 95 °C and cold source temperature of 20 °C with a net power output of 9.6 kW. Moreover, results revealed that for zeotropic mixtures, there is an optimal composition range within which binary mixtures are tending to work more efficiently than the component pure fluids. In addition, a significant increase in cycle efficiency can be achieved with a regenerative ORC, with cycle efficiency in the range 3.1–9.8% versus 8.6–17.4% for ORC both without and with regeneration, respectively. In conclusion, utilizing zeotropic mixtures may well expand the restriction faced in choosing WFs for solar-powered ORC-based micro-combined heat and power (CHP) systems.


2002 ◽  
Vol 09 (04) ◽  
pp. 325-337 ◽  
Author(s):  
Shengbing Zhou ◽  
Lingen Chen ◽  
Fengrui Sun ◽  
Chih Wu

The performance optimization of an irreversible simple Brayton refrigerator coupled to constant-temperature heat reservoirs is carried out by taking the cooling load density, i.e., the ratio of cooling load to the maximum specific volume in the cycle, as the optimization objective using finite-time thermodynamics (FTT) or entropy generation minimization (EGM) in this paper. The analytical formulae about the relations between cooling load density and pressure ratio, as well as between coefficient of performance (COP) and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers, and the irreversible compression and expansion losses in the compressor and expander. The influences of the effectiveness of the heat exchangers, the temperature ratio of the reservoirs, and the efficiencies of the compressor and expander on the cooling load density versus COP are provided by numerical examples. The cooling load density optimization is performed by searching the optimum pressure ratio of the compressor, and searching the optimum distribution of heat conductance of the hot- and cold-side heat exchangers for the fixed total heat exchanger inventory. The influences of some design parameters, including the effectiveness of the heat exchangers between the working fluid and heat reservoirs, the efficiencies of compressor and expander, the temperature ratio of heat reservoirs, on the maximum cooling load density, the optimum heat conductance distribution and the optimum pressure ratio are provided by numerical examples. The refrigeration plant design with optimization leads to a smaller size including the compressor, expander, and the hot- and cold-side heat exchangers.


1991 ◽  
Vol 113 (4) ◽  
pp. 514-521 ◽  
Author(s):  
O. M. Ibrahim ◽  
S. A. Klein ◽  
J. W. Mitchell

Optimization of the power output of Carnot and closed Brayton cycles is considered for both finite and infinite thermal capacitance rates of the external fluid streams. The method of Lagrange multipliers is used to solve for working fluid temperatures that yield maximum power. Analytical expressions for the maximum power and the cycle efficiency at maximum power are obtained. A comparison of the maximum power from the two cycles for the same boundary conditions, i.e., the same heat source/sink inlet temperatures, thermal capacitance rates, and heat exchanger conductances, shows that the Brayton cycle can produce more power than the Carnot cycle. This comparison illustrates that cycles exist that can produce more power than the Carnot cycle. The optimum heat power cycle, which will provide the upper limit of power obtained from any thermodynamic cycle for specified boundary conditions and heat exchanger conductances is considered. The optimum heat power cycle is identified by optimizing the sum of the power output from a sequence of Carnot cycles. The shape of the optimum heat power cycle, the power output, and corresponding efficiency are presented. The efficiency at maximum power of all cycles investigated in this study is found to be equal to (or well approximated by) η=1−TL,in/φTH,in where φ is a factor relating the entropy changes during heat rejection and heat addition.


2019 ◽  
Vol 9 (4) ◽  
pp. 680 ◽  
Author(s):  
Zhong Ge ◽  
Jian Li ◽  
Yuanyuan Duan ◽  
Zhen Yang ◽  
Zhiyong Xie

Waste heats of an internal combustion engine (ICE) are recovered by a dual-loop organic Rankine cycle (DORC). Thermodynamic performance analyses and optimizations are conducted with 523.15–623.15 K exhaust gas temperature (Tg1). Cyclopentane, cyclohexane, benzene, and toluene are selected as working fluids for high-temperature loop (HTL), whereas R1234ze(E), R600a, R245fa, and R601a are selected as working fluids for low-temperature loop (LTL). The HTL evaporation temperature, condensation temperature, and superheat degree are optimized through a genetic algorithm, and net power output is selected as the objective function. Influences of Tg1 on system net power output, thermal efficiency, exergy efficiency, HTL evaporation temperature, HTL condensation temperature, HTL superheat degree, exhaust gas temperature at the exit of the HTL evaporator, heat utilization ratio, and exergy destruction rate of the components are analyzed. Results are presented as follows: the net power output is mainly influenced by HTL working fluid. The optimal LTL working fluid is R1234ze(E). The optimal HTL evaporator temperature increases with Tg1 until it reaches the upper limit. The optimal HTL condensation temperature increases initially and later remains unchanged for a cyclopentane system, thus keeping constant for other systems. Saturated cycle is suitable for cyclohexane, benzene, and toluene systems. Superheat cycle improves the net power output for a cyclopentane system when Tg1 is 568.15–623.15 K.


Author(s):  
Brian Wolf ◽  
Shripad T. Revankar

In this paper, entropy generation minimization techniques are used in the analysis of an irreversible closed intercooled regenerative Brayton cycle coupled to variable temperature heat reservoirs. First, dimensionless power and efficiency equations are derived for a base case (single stage) which replicates those obtained in recent literature. Second, equations are derived for a multi-stage Brayton cycle. The dimensionless power and efficiency equations are used to analyze the effects of total pressure ratio, intercooling pressure ratio, thermal capacity rates of the working fluid and heat reservoirs, and the component (regenerator, intercooler, hot and cold side heat exchangers) effectiveness. Using detailed numerical examples, the optimal power and efficiency corresponding to variable component effectiveness, compressor and turbine efficiencies, intercooling pressure ratio, total pressure ratio, pressure recovery coefficients, heat reservoir inlet temperature ratio, and the cooling fluid in the intercooler and the cold side heat reservoir inlet temperature ratio are analyzed.


2013 ◽  
Vol 26 (3) ◽  
pp. 343-346
Author(s):  
David Van Den Einde

A closed power cycle using a supercritical solvent and solid solute as its working fluid is described. The difference in excess enthalpies of solution between high and low solvent densities caused by retrograde solubility in the supercritical region serves to internally elevate the temperature of a portion of the cycle's Q1 heat input before that energy affects gas expansion. The effect this internal temperature elevation has on cycle efficiency poses a dilemma for accepted definitions of the second law of thermodynamics.


2012 ◽  
Vol 614-615 ◽  
pp. 64-68
Author(s):  
Tuo Wang ◽  
Feng Wu ◽  
Jin Hua Fei ◽  
Ming Fang Liu

Thermo-acoustic refrigerator is a new type of engine, which is based on the thermo-acoustic effect. A new model which expresses as an ellipse in pressure-volume diagram is established to investigate the thermodynamic performance of an actual thermo-acoustic refrigeration micro-cycle. The demarcation points of endothermic processes and exothermic processes in the actual micro-cycle are found. The analytic expressions of the dimensionless cooling load and the coefficient of performance (COP) are deduced. The relationship between the dimensionless cooling load and the COP are investigated by numerical examples. The results show that the dimensionless cooling load is a monotonically increasing function of the COP and the pressure amplitude.


Author(s):  
Giovanni Manente ◽  
Randall Field ◽  
Ronald DiPippo ◽  
Jefferson W. Tester ◽  
Marco Paci ◽  
...  

This article examines how hybridization using solar thermal energy can increase the power output of a geothermal binary power plant that is operating on geothermal fluid conditions that fall short of design values in temperature and flow rate. The power cycle consists of a subcritical organic Rankine cycle using industrial grade isobutane as the working fluid. Each of the power plant units includes two expanders, a vaporizer, a preheater and air-cooled condensers. Aspen Plus was used to model the plant; the model was validated and adjusted by comparing its predictions to data collected during the first year of operation. The model was then run to determine the best strategy for distributing the available geothermal fluid between the two units to optimize the plant for the existing degraded geofluid conditions. Two solar-geothermal hybrid designs were evaluated to assess their ability to increase the power output and the annual energy production relative to the geothermal-only case.


Sign in / Sign up

Export Citation Format

Share Document