scholarly journals Electrically Charged

2002 ◽  
Vol 124 (06) ◽  
pp. 50-52
Author(s):  
Lee Longston

This article focuses on gas turbines that were produced in 2001 spanning a wide range of capacities. As the engineer's most versatile energy converters, gas turbines producing thrust power continued in 2001 to propel most of the world's aircraft, both military and commercial. The largest commercial jet engines today can produce as much as 120,000 pounds thrust, or some 534,000 Newton. More natural gas pipeline capacity will be added to feed the surge in gas-driven electric power plants that have been corning online in the United States and other parts of the world. The gas turbine may come to be used in a new, commercially promising closed-cycle configuration. A South African company has been working on plans to build and test a prototype of a closed-cycle electric power gas turbine, which uses helium gas as the working fluid and a helium-cooled nuclear reactor to provide heat to power the cycle. If the gas turbine-nuclear reactor power plant is successful, the gas turbine may be the key to yet another energy conversion device, as it has been with record-setting numbers of combined-cycle plants installed worldwide.

Author(s):  
Nikolett Sipöcz ◽  
Klas Jonshagen ◽  
Mohsen Assadi ◽  
Magnus Genrup

The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and has given rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs, and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture using an amine-based absorption process with monoethanolamine. To improve the costs of capture, the gas turbine GE 109FB is utilizing exhaust gas recirculation, thereby, increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from heat recovery steam generator. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple-pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept, thus, provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc., is reduced considerably.


2006 ◽  
Vol 128 (05) ◽  
pp. 36-39
Author(s):  
Lee S. Langston

This paper focuses on research and innovation in the gas turbine industry. The production of nonaviation gas turbines was $3.6 billion in 1990, only 15% of total production. With improvement in thermal efficiency, increases in unit size, and the building of record breaking combined-cycle electric power plants fueled by cheap natural gas, nonaviation production zoomed to a euphoric high of $25.8 billion in 2001. The US Department of Energy announced last year the award of $130 million for 10 new projects to integrate hydrogen-burning gas turbines and turbine subsystems into integrated gasification combined cycle (IGCC) central power stations. Nuclear generation is also a zero-emissions technology, and Pebble Bed Modular Reactor Ltd, a South African company, is developing a gas turbine-nuclear reactor electric power plant, with participating companies that include Westinghouse, MHI of Japan, Nukem of Germany, and South Africa's Eskom.


Author(s):  
Nikolett Sipo¨cz ◽  
Klas Jonshagen ◽  
Mohsen Assadi ◽  
Magnus Genrup

The European electric power industry has undergone considerable changes over the past two decades as a result of more stringent laws concerning environmental protection along with the deregulation and liberalization of the electric power market. However, the pressure to deliver solutions in regard to the issue of climate change has increased dramatically in the last few years and given the rise to the possibility that future natural gas-fired combined cycle (NGCC) plants will also be subject to CO2 capture requirements. At the same time, the interest in combined cycles with their high efficiency, low capital costs and complexity has grown as a consequence of addressing new challenges posed by the need to operate according to market demand in order to be economically viable. Considering that these challenges will also be imposed on new natural gas-fired power plants in the foreseeable future, this study presents a new process concept for natural gas combined cycle power plants with CO2 capture. The simulation tool IPSEpro is used to model a 400 MW single-pressure NGCC with post-combustion CO2 capture, using an amine-based absorption process with Monoethanolamine. To improve the costs of capture the gas turbine, GE 109FB, is utilizing exhaust gas recirculation, thereby increasing the CO2 content in the gas turbine working fluid to almost double that of conventional operating gas turbines. In addition, the concept advantageously uses approximately 20% less steam for solvent regeneration by utilizing preheated water extracted from HRSG. The further recovery of heat from exhaust gases for water preheating by use of an increased economizer flow results in an outlet stack temperature comparable to those achieved in combined cycle plants with multiple pressure levels. As a result, overall power plant efficiency as high as that achieved for a triple-pressure reheated NGCC with corresponding CO2 removal facility is attained. The concept thus provides a more cost-efficient option to triple-pressure combined cycles since the number of heat exchangers, boilers, etc. is reduced considerably.


2020 ◽  
Vol 6 (2) ◽  
Author(s):  
Emmanuel O. Osigwe ◽  
Arnold Gad-Briggs ◽  
Theoklis Nikolaidis ◽  
Pericles Pilidis ◽  
Suresh Sampath

Abstract As demands for clean and sustainable energy renew interests in nuclear power to meet future energy demands, generation IV nuclear reactors are seen as having the potential to provide the improvements required for nuclear power generation. However, for their benefits to be fully realized, it is important to explore the performance of the reactors when coupled to different configurations of closed-cycle gas turbine power conversion systems. The configurations provide variation in performance due to different working fluids over a range of operating pressures and temperatures. The objective of this paper is to undertake analyses at the design and off-design conditions in combination with a recuperated closed-cycle gas turbine and comparing the influence of carbon dioxide and nitrogen as the working fluid in the cycle. The analysis is demonstrated using an in-house tool, which was developed by the authors. The results show that the choice of working fluid controls the range of cycle operating pressures, temperatures, and overall performance of the power plant due to the thermodynamic and heat properties of the fluids. The performance results favored the nitrogen working fluid over CO2 due to the behavior CO2 below its critical conditions. The analyses intend to aid the development of cycles for generation IV nuclear power plants (NPPs) specifically gas-cooled fast reactors (GFRs) and very high-temperature reactors (VHTRs).


2013 ◽  
Vol 135 (02) ◽  
pp. 30-35
Author(s):  
Lee S. Langston

This article presents a study on new electric power gas turbines and the advent of shale natural gas, which now are upending electrical energy markets. Energy Information Administration (EIA) results show that total electrical production cost for a conventional coal plant would be 9.8 cents/kWh, while a conventional natural gas fueled gas turbine combined cycle plant would be a much lower at 6.6 cents/kWh. Furthermore, EIA estimates that 70% of new US power plants will be fueled by natural gas. Gas turbines are the prime movers for the modern combined cycle power plant. On the natural gas side of the recently upended electrical energy markets, new shale gas production and the continued development of worldwide liquefied natural gas (LNG) facilities provide the other element of synergism. The US natural gas prices are now low enough to compete directly with coal. The study concludes that the natural gas fueled gas turbine will continue to be a growing part of the world’s electric power generation.


Author(s):  
V.D. Molyakov ◽  
B.A. Kunikeev ◽  
N.I. Troitskiy

Closed-cycle gas turbine units can be used as power plants for advanced nuclear power stations, spacecraft, ground, surface and underwater vehicles. The purpose and power capacity of closed gas turbine units (CGTU) determine their specific design schemes, taking into account efficient operation of the units both in the nominal (design) mode and in partial power modes. Control methods of both closed and open gas turbine units depend on the scheme and design of the installation but the former differ from the latter mainly in their ability to change gas pressure at the entrance to the low-pressure compressor. This pressure can be changed by controlling the mass circulating in the CGTU circuit, adding or releasing part of the working fluid from the closed system as well as by internal bypassing of the working fluid. At a constant circulating mass in the single-shaft CGTU, the temperature of the gas before the turbines and the shaft speed can be adjusted depending on the type of load. The rotational speed of the turbine shaft, blocked with the compressor, can be adjusted in specific ways, such as changing the cross sections of the flow of the impellers. At a constant mass of the working fluid, the pressure at the entrance to the low-pressure compressor varies depending on the control program. The efficiency of the CGTU in partial power modes depends on the installation scheme, control method and program. The most economical control method is changing the pressure in the circuit. Extraction of the working fluid into special receivers while maintaining the same temperature in all sections of the unit leads to a proportional decrease in the density of the working fluid in all sections and the preservation of gas-dynamic similarity in the nodes (compressors, turbines and pipelines). Specific heat flux rates, and therefore, temperatures change slightly in heat exchangers. As the density decreases, heat fluxes change, as the heat transfer coefficient decreases more slowly than the density of the working fluid. With a decrease in power, this leads to a slight increase in the degree of regeneration and cooling in the heat exchangers. The underestimation of these phenomena in the calculations can be compensated by the underestimation of the growth of losses in partial power modes.


Author(s):  
Yoshiaki Nishimura ◽  
Sadahiro Ohno ◽  
Shinya Ishikawa ◽  
Junichiro Masada ◽  
Kazumasa Takata

As global warming becomes increasingly serious, Japan has committed to reduce the CO2 emission by 25% from 1990 levels in Japan with preconditions by the end of 2020. To reach such the difficult target, resources and energy utilizations should be more efficient than before. Tohoku Electric Power Company, Inc. (Tohoku-EPCO) has been adopting the cutting-edge gas turbines for combined cycle power plants to contribute to the reduction of energy consumption and pollutant emission. Now Tohoku-EPCO and Mitsubishi Heavy Industries, Ltd. (MHI) have started a study of next generation gas turbines to further improve the gas turbine combined cycle (GTCC) power plants efficiency. Tohoku-EPCO and MHI have invented a “closed circuit air cooling system” and a trial design of the closed circuit air cooled combustor is now being conducted as a collaborative project. Besides, the material technology development is being conducted for the further increase in the turbine Row 1 vane inlet temperature (TIT) in future.


Author(s):  
Leonid Moroz ◽  
Petr Pagur ◽  
Oleksii Rudenko ◽  
Maksym Burlaka ◽  
Clement Joly

Bottoming cycles are drawing a real interest in a world where resources are becoming scarcer and the environmental footprint of power plants is becoming more controlled. Reduction of flue gas temperature, power generation boost without burning more fuel and even production of heat for cogeneration applications are very attractive and it becomes necessary to quantify how much can really be extracted from a simple cycle to be converted to a combined configuration. As supercritical CO2 is becoming an emerging working fluid [2, 3, 5, 7 and 8] due not only to the fact that turbomachines are being designed significantly more compact, but also because of the fluid’s high thermal efficiency in cycles, it raises an increased interest in its various applications. Evaluating the option of combined gas and supercritical CO2 cycles for different gas turbine sizes, gas turbine exhaust gas temperatures and configurations of bottoming cycle type becomes an essential step toward creating guidelines for the question, “how much more can I get with what I have?”. Using conceptual design tools for the cycle system generates fast and reliable results to draw this type of conclusion. This paper presents both the qualitative and quantitative advantages of combined cycles for scalability using machines ranging from small to several hundred MW gas turbines to determine which configurations of S-CO2 bottoming cycles are best for pure electricity production.


2006 ◽  
Vol 128 (2) ◽  
pp. 326-335 ◽  
Author(s):  
R. Bhargava ◽  
M. Bianchi ◽  
F. Melino ◽  
A. Peretto

In recent years, deregulation in the power generation market worldwide combined with significant variation in fuel prices and a need for flexibility in terms of power augmentation specially during periods of high electricity demand (summer months or noon to 6:00 p.m.) has forced electric utilities, cogenerators and independent power producers to explore new power generation enhancement technologies. In the last five to ten years, inlet fogging approach has shown more promising results to recover lost power output due to increased ambient temperature compared to the other available power enhancement techniques. This paper presents the first systematic study on the effects of both inlet evaporative and overspray fogging on a wide range of combined cycle power plants utilizing gas turbines available from the major gas turbine manufacturers worldwide. A brief discussion on the thermodynamic considerations of inlet and overspray fogging including the effect of droplet dimension is also presented. Based on the analyzed systems, the results show that high pressure inlet fogging influences performance of a combined cycle power plant using an aero-derivative gas turbine differently than with an advanced technology or a traditional gas turbine. Possible reasons for the observed differences are discussed.


2018 ◽  
Vol 140 (03) ◽  
pp. S54-S55
Author(s):  
Uwe Schütz

This article describes features and advantages of new mobile gas turbine with a wide range of applications. The market for mobile gas turbines is continuously growing. Mobile units are also an ideal choice when it comes to making large power capacities available on a short-term basis, for example, for major events, prolonged downtimes at other power stations, or power-intensive applications such as mining or shale gas extraction. If the electricity requirements exceed the level that can normally be demanded of a mobile application, an SGT-A45 installation can be modified to form a combined-cycle power plant to further improve its efficiency. In remote locations, this can be achieved using an Organic Rankine Cycle (ORC), to eliminate the need for water and water treatment systems, and to optimize energy recovery from the SGT-A45 off-gas stream at a relatively low temperature. The use of a direct heat exchanger, in which the ORC working fluid is evaporated by the off-gas stream from the gas turbine, can boost the system’s output capacity by more than 20 percent.


Sign in / Sign up

Export Citation Format

Share Document