Investigation of Vortex Shedding and Wake-Wake Interaction in a Transonic Turbine Stage Using Laser-Doppler-Velocimetry and Particle-Image-Velocimetry

2005 ◽  
Vol 128 (1) ◽  
pp. 178-187 ◽  
Author(s):  
E. Göttlich ◽  
J. Woisetschläger ◽  
P. Pieringer ◽  
B. Hampel ◽  
F. Heitmeir

The current paper presents a time-resolved experimental flow investigation in a highly loaded transonic gas turbine stage operating continuously under engine representative conditions. The measurement was performed with a two-component laser-doppler-velocimeter (LDV) and a three-component stereoscopic particle-image-velocimeter (3C-PIV). Unsteady velocity data were obtained in axis perpendicular planes (LDV) and tangential planes (3C-PIV) between stator and rotor as well as downstream of the rotor. The results of the time-resolved investigation at several radii show the vortex shedding process from the trailing edges of nozzle guide vanes and rotor blades. This vortex shedding was found to be phase locked to higher harmonics of the blade passing frequency. Pressure waves evoked by reflection of the trailing edge shocks of the vanes on the passing rotor blades interact with the boundary layers on the rear suction side of the vanes and on the rotor blade surfaces while running upstream and downstream the flow. They are responsible for this phase-locking phenomenon of the shedding vortices. At midspan, the vortices shedding from stator and rotor blades were also observed by PIV. The in-plane vorticity distribution was used to discuss the wake-wake interaction indicating that wake segments from the nozzle guide vanes were chopped by the rotor blades. These chopped segments are still visible in the distributions as a pair of counter rotating vortices. The nozzle wake segments are transported through the rotor passages by the flow, influencing the vortex street of the rotor blades as they pass by with the higher velocity of the main flow. A comparison with a numerical simulation is also given.

Author(s):  
E. Go¨ttlich ◽  
J. Woisetschla¨ger ◽  
P. Pieringer ◽  
B. Hampel ◽  
F. Heitmeir

The current paper presents a time-resolved experimental flow investigation in a highly loaded transonic gas turbine stage operating continuously under engine representative conditions. The measurement was performed with a two-component Laser-Doppler-Velocimeter (LDV) and a three-component stereoscopic Particle-Image-Velocimeter (3C-PIV). Unsteady velocity data were obtained in axis perpendicular planes (LDV) and tangential planes (3C-PIV) between stator and rotor as well as downstream of the rotor. The results of the time-resolved investigation at several radii show the vortex shedding process from the trailing edges of nozzle guide vanes and rotor blades. This vortex shedding was found to be phase locked to higher harmonics of the blade passing frequency. Pressure waves evoked by reflection of the trailing edge shocks of the vanes on the passing rotor blades interact with the boundary layers on the rear suction side of the vanes and on the rotor blade surfaces while running upstream and downstream the flow. They are responsible for this phase-locking phenomenon of the shedding vortices. At midspan, the vortices shedding from stator and rotor blades were also observed by PIV. The in-plane vorticity distribution was used to discuss the wake-wake interaction indicating that wake segments from the nozzle guide vanes were chopped by the rotor blades. These chopped segments are still visible in the distributions as a pair of counter rotating vortices. The nozzle wake segments are transported through the rotor passages by the flow, influencing the vortex street of the rotor blades as they pass by with the higher velocity of the main flow. A comparison with a numerical simulation is also given.


Author(s):  
Koichi Yonezawa ◽  
Tomoki Kagayama ◽  
Masahiro Takayasu ◽  
Genki Nakai ◽  
Kazuyasu Sugiyama ◽  
...  

Deteriorations of nozzle guide vanes (NGVs) and rotor blades of a steam turbine through a long-time operation usually decrease a thermal efficiency and a power output of the turbine. In this study, influences of blade deformations due to erosion are discussed. Experiments were carried out in order to validate numerical simulations using a commercial software ANSYS-cfx. The numerical results showed acceptable agreements with experimental results. Variation of flow characteristics in the first stage of the intermediate pressure steam turbine is examined using numerical simulations. Geometries of the NGVs and the rotor blades are measured using a 3D scanner during an overhaul. The old NGVs and the rotor blades, which were used in operation, were eroded through the operation. The erosion of the NGVs leaded to increase of the throat area of the nozzle. The numerical results showed that rotor inlet velocity through the old NGVs became smaller and the flow angle of attack to the rotor blade leading edge became smaller. Consequently, the rotor power decreased significantly. Influences of the flow angle of at the rotor inlet were examined by parametric calculations and results showed that the angle of attack was an important parameter to determine the rotor performance. In addition, the influence of the deformation of the rotor blade was examined. The results showed that the degradation of the rotor performance decreased in accordance with the decrease of blade surface area.


Author(s):  
Koichi Yonezawa ◽  
Masahiro Takayasu ◽  
Genki Nakai ◽  
Kazuyasu Sugiyama ◽  
Katsuhiko Sugita ◽  
...  

Abstract Nozzle guide vanes (NGVs) and rotor blades deteriorate due to erosion, and this may affect the aerodynamic characteristics of gas turbines. According to previous studies, the erosion of first-stage NGVs significantly affected the blade loading of the first-stage rotor. An increase in the tip gap also may significantly affect the gas turbine performance. In the present study, numerical investigations have been carried out using a real eroded nozzle and blade geometries for two purposes. One purpose was to clarify the influences underlying the deterioration of the nozzle and the rotor blade, such as the effects on the erosion of NGVs in the first stage and the effects of the tip gap on the gas turbine performance. The other was to develop a method to estimate the total gas turbine performance using a CFD simulation and a heat balance analysis. The results show that the erosion of NGV leads to an increased flow rate and affects the operating condition of the gas turbine cycle. This, in turn, can decrease the total thermal efficiency. The experimental results suggest that an increase in the tip gap width decreases rotor output almost linearly, and the numerical results showed the same tendency. The influence of the tip gap in the real gas turbine condition was also examined, revealing that an increase in the tip gap leads to an increase in the pressure loss in the nozzle downstream as well as around the rotor blade itself. Consequently, the total power output and the isentropic efficiency of the turbine decreased.


2004 ◽  
Vol 13 (2) ◽  
pp. 163-166
Author(s):  
A. V. Soudarev ◽  
A. A. Souryaninov ◽  
V. Ya. Podgorets ◽  
V. V. Grishaev ◽  
V.Yu Tikhoplav ◽  
...  

2021 ◽  
pp. 1-23
Author(s):  
Daniel Burdett ◽  
Thomas Povey

Abstract A common objective in the analysis of turbomachinery components (nozzle guide vanes or rotor blades, for example) is to calculate performance parameters, such as total pressure or kinetic energy loss coefficients, from measurements in a non-uniform flow-field. These performance parameters can be represented in a range of ways. For example: line-averages used to compare performance between different radial sections of a 3D component; plane-averages used to assess flow (perhaps loss coefficient) development between different axial planes; and fully mixed-out values used to determine the total loss associated with a component. In this paper, we compare a range of methods for calculating aerodynamic performance parameters including plane-average methods with different weighting schemes and several mixed-out methods. We analyse the sensitivities of the different methods to the axial location of the measurement plane, the radial averaging range, and the exit Mach number. We use high-fidelity experimental data taken in several axial planes downstream of a cascade of engine parts: high pressure (HP) turbine nozzle guide vanes (NGVs) operating at transonic Mach number. The experimental data is complemented by CFD. We discuss the underlying physical mechanisms which give rise to the observed sensitivities. The objective is to provide guidance on the accuracy of each method in a relevant, practical application.


Author(s):  
Lei-Yong Jiang ◽  
Yinghua Han ◽  
Prakash Patnaik

To understand the physics of volcanic ash impact on gas turbine hot-components and develop much-needed tools for engine design and fleet management, the behaviors of volcanic ash in a gas turbine combustor and nozzle guide vanes (NGV) have been numerically investigated. High-fidelity numerical models are generated, and volcanic ash sample, physical, and thermal properties are identified. A simple critical particle viscosity—critical wall temperature model is proposed and implemented in all simulations to account for ash particles bouncing off or sticking on metal walls. The results indicate that due to the particle inertia and combustor geometry, the volcanic ash concentration in the NGV cooling passage generally increases with ash size and density, and is less sensitive to inlet velocity. It can reach three times as high as that at the air inlet for the engine conditions and ash properties investigated. More importantly, a large number of the ash particles entering the NGV cooling chamber are trapped in the cooling flow passage for all four turbine inlet temperature conditions. This may reveal another volcanic ash damage mechanism originated from engine cooling flow passage. Finally, some suggestions are recommended for further research and development in this challenging field. To the best of our knowledge, it is the first study on detailed ash behaviors inside practical gas turbine hot-components in the open literature.


2014 ◽  
Vol 23 (2) ◽  
pp. 138-144 ◽  
Author(s):  
Yixiong Liu ◽  
Ce Yang ◽  
Chaochen Ma ◽  
DaZhong Lao

Author(s):  
Arash Farahani ◽  
Peter Childs

Strip seals are commonly used to prevent or limit leakage flows between nozzle guide vanes (NGV) and other gas turbine engine components that are assembled from individual segments. Leakage flow across, for example, a nozzle guide vane platform, leads to increased demands on the gas turbine engine internal flow system and a rise in specific fuel consumption (SFC). Careful attention to the flow characteristics of strip seals is therefore necessary. The very tight tolerances associated with strip seals provides a particular challenge to their characterisation. This paper reports the validation of CFD modelling for the case of a strip seal under very carefully controlled conditions. In addition, experimental comparison of three types of strip seal design, straight, arcuate, and cloth, is presented. These seals are typical of those used by competing manufacturers of gas turbine engines. The results show that the straight seal provides the best flow sealing performance for the controlled configuration tested, although each design has its specific merits for a particular application.


Author(s):  
A. A. Thrift ◽  
K. A. Thole ◽  
S. Hada

First stage, nozzle guide vanes and accompanying endwalls are extensively cooled by the use of film cooling through discrete holes and leakage flow from the combustor-turbine interface gap. While there are cooling benefits from the interface gap, it is generally not considered as part of the cooling scheme. This paper reports on the effects of the position and orientation of a two-dimensional slot on the cooling performance of a nozzle guide vane endwall. In addition to surface thermal measurements, time-resolved, digital particle image velocimetry (TRDPIV) measurements were performed at the vane stagnation plane. Two slot orientations, 90° and 45°, and three streamwise positions were studied. Effectiveness results indicate a significant increase in area averaged effectiveness for the 45° slot relative to the 90° orientation. Flowfield measurements show dramatic differences in the horseshoe vortex formation.


2012 ◽  
Vol 445 ◽  
pp. 1047-1052
Author(s):  
Alaaeldin H. Mustafa

Failure analysis investigation was conducted on 70 MW set of 1st stage turbine nozzle guide vanes (NGVs) of heavy industrial gas turbine. The failure was investigated using the light optical microscope (LOM), X-ray diffraction analysis (XRD) and energy dispersive X-ray spectroscopy (EDS) in an environmental scanning electron microscope (ESEM). The results of the analysis indicate that the NGVs which were made of Co base superalloy FSX-414 had been operated above the recommended operating hours under different fuel types in addition to inadequate repair process in previous repair removal. The XRD analysis of the fractured areas sample shows presence ofwhich might indicate the prolonged operation at high temperature. Keywords: cobalt-base; nozzle guide vanes, gas turbine.


Sign in / Sign up

Export Citation Format

Share Document