Modeling of a High Speed Rotor Test Rig With Active Magnetic Bearings

2005 ◽  
Vol 128 (3) ◽  
pp. 269-281 ◽  
Author(s):  
Guoxin Li ◽  
Zongli Lin ◽  
Paul E. Allaire ◽  
Jihao Luo

This paper reports on the modeling and experimental identification of a high speed rotor-magnetic bearing test rig. An accurate nominal model and an uncertainty representation are developed for robust controller synthesis and analysis. A combination of analytical modeling, model updating, and identification is employed for each system component and for the system as a whole. This approach takes advantage of both the behavior modeling and input/output modeling methods. Analytical models of the rotor and the magnetic bearings are first developed from physical laws and refined by comparison with the experimental data. The substructure model is directly identified from the experimental data by a structured identification approach. Models of the electronic systems, such as the filters, amplifiers, sensors, and digital controller, are developed through experimental identification. These component models are then assembled to obtain the overall system model. Closed-loop tests are conducted to identify parameters in the model. Advanced control techniques based on H∞ control and μ synthesis are developed and successfully implemented on the test rig, which further validates the model.

1998 ◽  
Vol 120 (1) ◽  
pp. 110-114 ◽  
Author(s):  
M. E. F. Kasarda ◽  
P. E. Allaire ◽  
E. H. Maslen ◽  
G. R. Brown ◽  
G. T. Gillies

The continual increase in the use of magnetic bearings in various capacities, including high-speed aerospace applications such as jet engine prototypes, dictates the need to quantify power losses in this type of bearing. The goal of the present study is to develop and experimentally verify general power loss equations for the high-speed operation of magnetic bearings. Experimental data from a large-scale test rotor have been presented in Part 1 of this study. Analytical/empirical predictions are presented here for the test bearings, a pair of eight-pole planar radial bearings, for comparison to the experimental results from Part 1. Expressions for the four loss components, eddy current, alternating hysteresis, rotating hysteresis, and windage, are also presented. Analytical/empirical predictions for the test bearings at three different bias flux levels demonstrate good correlation with corresponding experimental data. Throughout most of the speed range the dominant loss mechanism appears to be eddy currents.


Author(s):  
M. E. F. Kasarda ◽  
P. E. Allaire ◽  
E. H. Maslen ◽  
G. R. Brown ◽  
G. T. Gillies

The continual increase in the use nf magnetic bearings in varinus capacities, including high speed aerospace applications such as jet engine prototypes, dictates the need to quantify power losses in this type of bearing. The goal of the present study is to develop and experimentally verify general power loss equations for the high speed operation of magnetic bearings. Experimental data from a large scale test rotor has been presented in Part 1 of this study. Analytical/empirical predictions are presented here for the test bearings, a pair of 8-pole planar radial bearings, for comparison to the experimental results from Part 1. Expressions for the four loss components, eddy current, alternating hysteresis, rotating hysteresis, and windage, are also presented. Analytical/empirical predictions for the test bearings at three different bias flux levels demonstrate good correlation with corresponding experimental data. Throughout mnst of the speed range the dominant loss mechanism appears to be eddy currents.


2000 ◽  
Vol 123 (3) ◽  
pp. 464-472 ◽  
Author(s):  
Z. S. Spakovszky ◽  
J. D. Paduano ◽  
R. Larsonneur ◽  
A. Traxler ◽  
M. M. Bright

Magnetic bearings are widely used as active suspension devices in rotating machinery, mainly for active vibration control purposes. The concept of active tip-clearance control suggests a new application of magnetic bearings as servo-actuators to stabilize rotating stall in axial compressors. This paper presents a first-of-a-kind feasibility study of an active stall control experiment with a magnetic bearing servo-actuator in the NASA Glenn high-speed single-stage compressor test facility. Together with CFD and experimental data a two-dimensional, incompressible compressor stability model was used in a stochastic estimation and control analysis to determine the required magnetic bearing performance for compressor stall control. The resulting requirements introduced new challenges to the magnetic bearing actuator design. A magnetic bearing servo-actuator was designed that fulfilled the performance specifications. Control laws were then developed to stabilize the compressor shaft. In a second control loop, a constant gain controller was implemented to stabilize rotating stall. A detailed closed loop simulation at 100 percent corrected design speed resulted in a 2.3 percent reduction of stalling mass flow, which is comparable to results obtained in the same compressor by Weigl et al. (1998. ASME J. Turbomach. 120, 625–636) using unsteady air injection. The design and simulation results presented here establish the viability of magnetic bearings for stall control in aero-engine high-speed compressors. Furthermore, the paper outlines a general design procedure to develop magnetic bearing servo-actuators for high-speed turbomachinery.


Author(s):  
Martin Gronek ◽  
Torsten Rottenbach ◽  
Frank Worlitz

Within a subproject of the RAPHAEL-Program, which is part of the 6th EURATOM Framework Program supervised by the European Commission it was investigated whether the use of a Hybrid Magnetic Bearing Concept (HMBC) will be beneficial for a blower application. As in the RAPHAEL program the subproject “Component Development” deals with R&D on components of High Temperature Reactor Technology (HTR), a major focus is on safety- and reliability-related issues. That implies special requirements for the support of high speed rotating shafts in HTR-Applications that only can be satisfied by using Active Magnetic Bearings (AMB). Regarding safety and competitiveness, AMBs are considered key components for the support of rotating HTR-components due to their technical features. AMBs are characterized by an electromagnetic actuator that is generating the bearing force depending on the clearance between stator and rotor, in which the rotor is levitated. Therefore an active control of the coil current is necessary. Furthermore, Touch Down Bearings (TDB) are needed to avoid damages in case of an emergency shut down or in case of energy supply losses. This contribution provides an internal insight on the advantages of a Hybrid Magnetic Bearing Concept that is characterized by a completely Active Magnetic Bearing-supported vertical arranged rotor and an additional permanent magnetic Radial Bearing. One benefit of the HMBC is an additional radial guidance of the shaft that may reduce the loads while dropping into the Touch Down Bearings e.g. in case of energy supply losses of the AMBs. Reduced loads on the TDBs will increase their life cycle and the availability of the AMB supported component. The Scope of this R&D-Project, which will be described more detailed in this contribution, includes the analytical modeling and simulation of the dynamic behavior of the Hybrid Magnetic Bearing System, the modification of the completely AMB-supported test facility FLP500 with a radial PMB and the experimental tests and validation of the analytical models to provide recommendations for the investigated blower application as an HTR-component. Furthermore, the effects occurring during the modification of the test facility and the approach that was necessary to solve unexpected problems will be described.


1998 ◽  
Vol 120 (1) ◽  
pp. 105-109 ◽  
Author(s):  
M. E. F. Kasarda ◽  
P. E. Allaire ◽  
E. H. Maslen ◽  
G. R. Brown ◽  
G. T. Gillies

The continual increase in the use of magnetic bearings in various capacities, including high-speed aerospace applications such as jet engine prototypes, dictates the need to quantify power losses in this type of bearing. The goal of this study is to present experimentally measured power losses during the high-speed operation of a pair of magnetic bearings. A large-scale test rotor has been designed and built to obtain unambiguous power loss measurements while varying a variety of test parameters. The test apparatus consists of a shaft supported in two radial magnetic bearings and driven by two electric motors also mounted on the shaft. The power losses of the spinning rotor are determined from the time rate of change of the kinetic energy of the rotor as its angular speed decays during free rotation. Measured results for the first set of magnetic bearings, a pair of eight-pole planar radial bearings, are presented here. Data from three different parameter studies including the effect of the bias flux density, the effect of the bearing pole configuration, and the effect of the motor stator on the power loss are presented. Rundown plots of the test with the bearings in the paired pole (NNSS) versus the alternating (NSNS) pole configuration show only small differences, with losses only slightly higher when the poles are in the alternating pole (NSNS) configuration. Loss data were also taken with the motor stators axially removed from the motor rotors for comparison with the case where the motor stators are kept in place. No measurable difference was observed between the two cases, indicating negligible windage and residual magnetic effects. Throughout most of the speed range, the dominant loss mechanism appears to be eddy currents.


1992 ◽  
Vol 114 (4) ◽  
pp. 623-633 ◽  
Author(s):  
K. Youcef-Toumi ◽  
S. Reddy

The successful operation of actively controlled magnetic bearings depends greatly on the electromechanical design and control system design. The function of the controller is to maintain bearing performance in the face of system dynamic variations and unpredictable disturbances. The plant considered here is the rotor and magnetic bearing assembly of a test apparatus. The plant dynamics consisting of actuator dynamics, rigid rotor dynamics and flexibility effects are described. Various components of the system are identified and their corresponding linearized theoretical models are validated experimentally. Tests are also run to identify the coupling effects and flexibility modes. The highly nonlinear behavior of the magnetic bearings in addition to the inherent instability of such a system makes the controller design complex. A digital Time Delay Controller is designed and its effectiveness evaluated using several simulations based on linear and nonlinear models for the bearing including bending mode effects. This controller is implemented as an alternative to an existing linear analog compensator. Several experiments are conducted with each controller for spinning and nonspinning conditions. These include time responses, closed loop frequency responses and disturbance rejection responses. The experimental results and comparisons between those of a digital Time Delay Controller and an analog compensator indicate that the Time Delay Controller has impressive static and dynamic stiffness characteristics for the prototype considered. The Time Delay Controller also maintains almost the same dynamic behavior over a significantly wide range of rotor speeds.


Author(s):  
David Noel ◽  
Sebastien Le Loch ◽  
Mathieu Ritou ◽  
Benoit Furet

The modeling of High Speed Machining (HSM) spindles is a complex task due to the numerous physical phenomena involved in the dynamic behavior. Modeling is still rarely used in the industry, although sophisticated research work has been achieved. The boundary conditions of rotor models, which correspond to the ball bearings, are crucial and difficult to define. Indeed, they affect the dynamic behavior of the rotor in a non-linear and sometimes in an unpredictable way. The aim of the paper is to determine a relevant spindle model, i.e. the adequate level of complexity. To do so, a dynamic bearing model is introduced and the axial model of a spindle is established in relation to the preloaded bearing arrangement. Then, the operating stiffness of the spindle has been obtained experimentally with a new specific device that applies axial load and measures the resulting displacement, whatever the spindle speed. The model updating with the experimental data combined to sensibility analysis have led to the model refinement with additional physical phenomena, in order to account for non-linearities observed experimentally. The parameters of the model are also identified experimentally. As a result, a relevant spindle model is obtained and validated by the good agreement between simulations and experiments.


2009 ◽  
Vol 131 (5) ◽  
Author(s):  
Hongchang Wang ◽  
Shuyun Jiang ◽  
Zupei Shen

Active magnetic bearings and superconducting magnetic bearings were used on a high-speed flywheel energy storage system; however, their wide industrial acceptance is still a challenging task because of the complexity in designing the elaborate active control system and the difficulty in satisfying the cryogenic condition. A hybrid bearing consisting of a permanent magnetic bearing and a pivot jewel bearing is used as the support for the rotor of the energy storage flywheel system. It is simple and has a long working life without requiring maintenance or an active control system. The two squeeze film dampers are employed in the flywheel system to suppress the lateral vibration, to enhance the rotor leaning stability, and to reduce the transmitted forces. The dynamic equation of the flywheel with four degrees of complex freedom is built by means of the Lagrange equation. In order to improve accuracy, the finite element method is utilized to solve the Reynolds equation for the dynamic characteristics of the squeeze film damper. When the calculated unbalance responses are compared with the test responses, they indicate that the dynamics model is correct. Finally, the effect of the squeeze film gap on the transmitted force is analyzed, and the appropriate gap should be selected to cut the energy loss and to control vibration of the flywheel system.


2004 ◽  
Vol 126 (2) ◽  
pp. 373-384 ◽  
Author(s):  
A. Escalante ◽  
V. Guzma´n ◽  
M. Parada ◽  
L. Medina ◽  
S. E. Diaz

The use of magnetic bearings in high speed/low friction applications is increasing in industry. Magnetic bearings are sophisticated electromechanical systems, and modeling magnetic bearings using standard techniques is complex and time consuming. In this work a neural network is designed and trained to emulate the operation of a complete system (magnetic bearing, PID controller, and power amplifiers). The neural network is simulated and integrated into a virtual instrument that will be used in the laboratory both as a teaching and a research tool. The main aims in this work are: (1) determining the minimum amount of artificial neurons required in the neural network to emulate the magnetic bearing system, (2) determining the more appropriate ANN training method for this application, and (3) determining the errors produced when a neural network trained to emulate system operation with a balanced rotor is used to predict system response when operating with an unbalanced rotor. The neural network is trained using as input the position data from the proximity sensors; neural network outputs are the control signals to the coil amplifiers.


Author(s):  
Z. S. Spakovszky ◽  
J. D. Paduano ◽  
R. Larsonneur ◽  
A. Traxler ◽  
M. M. Bright

Magnetic bearings are widely used as active suspension devices in rotating machinery, mainly for active vibration control purposes. The concept of active tip clearance control suggests a new application of magnetic bearings as servo-actuators to stabilize rotating stall in axial compressors. This paper presents a first-of-a-kind feasibility study of an active stall control experiment with a magnetic bearing servo-actuator in the NASA Glenn high-speed single-stage compressor test facility. Together with CFD and experimental data a two-dimensional, incompressible compressor stability model was used in a stochastic estimation and control analysis to determine the required magnetic bearing performance for compressor stall control. The resulting requirements introduced new challenges to the magnetic bearing actuator design. A magnetic bearing servo-actuator was designed which fulfilled the performance specifications. Control laws were then developed to stabilize the compressor shaft. In a second control loop, a constant gain controller was implemented to stabilize rotating stall. A detailed closed loop simulation at 100% corrected design speed resulted in a 2.3% reduction of stalling mass flow which is comparable to results obtained in the same compressor by Weigl et al. (1998) using unsteady air injection. The design and simulation results presented here establish the viability of magnetic bearings for stall control in aero-engine high-speed compressors. Furthermore the paper outlines a general design procedure to develop magnetic bearing servo-actuators for high-speed turbomachinery.


Sign in / Sign up

Export Citation Format

Share Document