Finite Element Modeling and Analysis of Warm Forming of Aluminum Alloys—Validation Through Comparisons With Experiments and Determination of a Failure Criterion

2005 ◽  
Vol 128 (3) ◽  
pp. 613-621 ◽  
Author(s):  
Hong Seok Kim ◽  
Muammer Koç ◽  
Jun Ni ◽  
Amit Ghosh

In this study, thermomechanically coupled finite element analysis (FEA) was performed for forming aluminum rectangular cups at elevated temperatures. In order to identify the onset of a failure during FEA, applicability, accuracy, and repeatability of three different failure criteria (maximum load, minimum thickness, and thickness ratio) were investigated. The thickness ratio criterion was selected since it resulted in accurate prediction of necking-type failure when compared with experimental measurements obtained under a variety of warm forming conditions. Predicted part depth values from FEA at various die-punch temperature combinations and blank holder pressures conditions were also compared with experiments, and showed good agreement. Forming limit diagrams were established at three different warm forming temperature levels (250°C, 300°C, and 350°C). An increasing limiting strain was observed with increasing forming temperature both in FEA and experiments. In addition, strain distributions on the formed part obtained under different die-punch temperature combinations were also compared to further validate the accuracy of FEA. A high temperature gradient between die and punch (Tdie>Tpunch) was found to result in increased formability; i.e., high part depths.

Author(s):  
Minchao Cui ◽  
Shengdun Zhao ◽  
Chao Chen ◽  
Da-Wei Zhang ◽  
Jingxiang Li ◽  
...  

The effects of the warm forming temperature on the axial-pushed incremental rolling process were investigated through finite element analysis and experimental studies. Firstly, the principle of warm axial-pushed incremental rolling process of spline shaft was introduced. Next, the material properties of 42CrMo steel at different forming temperatures were studied to discuss the effects of the warm forming temperature. Through finite element analysis, the simulations of the axial-pushed incremental rolling process were carried out to investigate the effects of the warm forming temperature on rolling forces. The results indicated that the axial and radial forces on the rolling dies were both reduced at the warm forming temperature. Finally, the experiment studies were carried out on a warm axial-pushed incremental rolling equipment. The dimensional precision, microstructure, and hardness of the formed spline shafts at warm temperature were compared with those of the formed spline shafts at room temperature. The results indicated that the spline shafts, which were formed at the warm temperature, possesses of a good dimensional precision and excellent performance. The results in this paper demonstrated that the warm forming temperature has the positive effects on the performance improvement of the axial-pushed incremental rolling process of spline shaft.


Author(s):  
Zhutao Shao ◽  
Qian Bai ◽  
Nan Li ◽  
Jianguo Lin ◽  
Zhusheng Shi ◽  
...  

The determination of forming limit curves and deformation features of AA5754 aluminium alloy are studied in this article. The robust and repeatable experiments were conducted at a warm forming temperature range of 200 °C–300 °C and at a forming speed range of 20–300 mm/s. The forming limit curves of AA5754 at elevated temperatures with different high forming speeds have been obtained. The effects of forming speed and temperature on limiting dome height, thickness variation and fracture location are discussed. The results show that higher temperatures and lower forming speeds are beneficial to increasing forming limits of AA5754; however, lower temperatures and higher forming speeds contribute to enhancing the thickness uniformity of formed specimens. The decreasing forming speed and increasing temperature result in the locations of fracture to move away from the apexes of formed specimens. It is found that the analysis of deformation features can provide a guidance to understand warm forming process of aluminium alloys.


Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Javier A. Kypuros ◽  
Lariza A. Navarro ◽  
Andrei G. Vaipan ◽  
...  

In the railroad industry, distressed bearings in service are primarily identified using wayside hot-box detectors (HBDs). Current technology has expanded the role of these detectors to monitor bearings that appear to “warm trend” relative to the average temperatures of the remainder of bearings on the train. Several bearings set-out for trending and classified as nonverified, meaning no discernible damage, revealed that a common feature was discoloration of rollers within a cone (inner race) assembly. Subsequent laboratory experiments were performed to determine a minimum temperature and environment necessary to reproduce these discolorations and concluded that the discoloration is most likely due to roller temperatures greater than 232 °C (450 °F) for periods of at least 4 h. The latter finding sparked several discussions and speculations in the railroad industry as to whether it is possible to have rollers reaching such elevated temperatures without heating the bearing cup (outer race) to a temperature significant enough to trigger the HBDs. With this motivation, and based on previous experimental and analytical work, a thermal finite element analysis (FEA) of a railroad bearing pressed onto an axle was conducted using ALGOR 20.3™. The finite element (FE) model was used to simulate different heating scenarios with the purpose of obtaining the temperatures of internal components of the bearing assembly, as well as the heat generation rates and the bearing cup surface temperature. The results showed that, even though some rollers can reach unsafe operating temperatures, the bearing cup surface temperature does not exhibit levels that would trigger HBD alarms.


Author(s):  
V. Ramirez-Elias ◽  
E. Ledesma-Orozco ◽  
H. Hernandez-Moreno

This paper shows the finite element simulation of a representative specimen from the firewall section in the AEROMARMI ESTELA M1 aircraft. This specimen is manufactured in glass and carbon / epoxy laminates. The specimen is subjected to a load which direction and magnitude are determined by a previous dynamic loads study [10], taking into account the maximum load factor allowed by the FAA (Federal Aviation Administration) for utilitarian aircrafts [11]. A representative specimen is manufactured with the same features of the firewall. Meanwhile a fix is built in order to introduce the load directions on the representative specimen. The relationship between load and displacement is plotted for this representative specimen, whence the maximum displacement at the specific load is obtained, afterwards it is compared with the finite element model, which is modified in its laminate thicknesses in order to decrease the deviation error; subsequently this features could be applied to perform the whole firewall analysis in a future model [10].


2017 ◽  
Vol 4 (2) ◽  
pp. 957-965
Author(s):  
Chadaram Srinivasu ◽  
Swadesh Kumar Singh ◽  
Gangadhar Jella ◽  
Lade Jayahari ◽  
Nitin Kotkunde

2014 ◽  
Vol 663 ◽  
pp. 668-674
Author(s):  
Azman Senin ◽  
Zulkifli Mohd Nopiah ◽  
Muhammad Jamhuri Jamaludin ◽  
Ahmad Zakaria

The Finite-Element Analysis (FEA) is a prediction methodology that facilitates product designers produced the part design with manufacturing focused. With the similar advantages, manufacturing engineers are capable of build the first actual car model from the new production Draw Die. This approach has eliminated the requirement to manufacture the prototype model from soft tool parts and soft tool press die. However, the prediction accuracy of FEA is a major topic of research work in automotive sector's practitioners and academia as current accuracy level is anticipated at 60%. The objective of works is to assess the prediction accuracy on deformation results from mass production stamped parts. The Finite-element model is developed from the CAD data of the production tools. Subsequently, finite-element model for production tools is discretized with shell elements to avoid computation errors in the simulation process. The sheet blank material with 1.5 mm and 2.0 mm thickness is discredited by shell (2D modeling) and solid elements (3D modeling) respectively. The input parameters for the simulation model for both elements are attained from the actual setup at Press Machine and Production Tool. The analysis of deformation and plastic strain are performed for various setup parameters. Finally, the deformation characteristic such as Forming Limit Diagram (FLD) and thinning are compared for all simulated models.


2021 ◽  
Author(s):  
Paul T. Smith ◽  
Daniel J. Griffin

Abstract To ensure safe and reliable operation, steam turbine casings must have acceptable stresses and maintain sealing when subjected to internal pressures and temperatures. To show turbine casings acceptable, analysts conduct structural evaluations using finite element analysis (FEA) techniques. This paper outlines the analytical methods used to perform these types of analyses, provides analysis examples, and summarizes the process to create pressure and temperature limit maps. Finite element models of the main casing and steam chest are used to determine stresses and sealing of the casing horizontal split line and steam chest cover during normal operation. The sealing evaluations consider the sealing capabilities of the bolted joints when the casing is subjected to internal steam pressure and consider the effects of bolt stress relaxation at elevated temperatures, joint contact surface separation, and penetration of the internal pressure into the sealing surface. The acceptance criteria for the bolted joint sealing is based on the minimum width of the contacting surface and the minimum joint contact pressure. A series of analyses were conducted on the various models to create pressure and temperature limit maps, so that the design can be applied for the appropriate conditions. These maps plot maximum allowable working pressure (MAWP) versus maximum allowable working temperature (MAWT), and allow an application engineer to easily determine the acceptability of the casing for a particular application. An explanation of the process used to create the limit maps is presented.


2021 ◽  
Vol 156 (A4) ◽  
Author(s):  
A Cubells ◽  
Y Garbatov ◽  
C Guedes Soares

The objective of the present study is to develop a new approach to model the initial geometrical imperfections of ship plates by using Photogrammetry. Based on images, Photogrammetry is able to take measurements of the distortions of plates and to catch the dominant surface shape, including the deformations of the edges. Having this data, it is possible to generate faithful models of plate surface based on third order polynomial functions. Finally, the maximum load- carrying capacity of the plates is analysed by performing a nonlinear finite element analysis using a commercial finite element code. Three un-stiffened and four stiffened plates have been modelled and analysed. For each plate, two initial imperfection models have been generated one, based on photogrammetric measurements and the other, based on the trigonometric Fourier functions. Both models are subjected to the same uniaxial compressive load and boundary conditions in order to study the ultimate strength.


2017 ◽  
Vol 52 (4) ◽  
pp. 258-273 ◽  
Author(s):  
D Raja Satish ◽  
D Ravi Kumar ◽  
Marion Merklein

Formability of AA5182-O aluminum alloy sheets in the warm working temperature range has been studied. Forming limit strains of sheets of two different thicknesses have been determined experimentally in different modes of deformation (biaxial tension, plane strain and tension–compression) by varying temperature and punch speed. A correlation has been established for plane strain intercept of the forming limit diagram (FLD0) with temperature, punch speed and thickness from the experimental results. This correlation has been used to plot the forming limit diagrams for failure prediction in the finite element analysis of warm deep drawing of cylindrical cups. The effect of strain and strain rate on material flow behavior has been incorporated using a strain rate–sensitive power hardening law in which the strain hardening exponent and strain rate sensitivity index have been experimentally determined. The predictions from simulations have been validated by warm deep drawing experiments. Large improvement in accuracy of failure prediction has been observed using the FLDs plotted based on the developed correlation when compared to the existing method of calculating FLD0 using only strain hardening coefficient and thickness. The results clearly indicate the importance of incorporating temperature and punch speed in failure prediction of Al alloys using FLDs in the warm working temperature range.


1990 ◽  
Vol 27 (2) ◽  
pp. 224-232 ◽  
Author(s):  
R. J. Chalaturnyk ◽  
J. D. Scott ◽  
D. H. K. Chan ◽  
E. A. Richards

Nonlinear finite element analyses were performed on a nonreinforced embankment and a polymeric reinforced embankment, with 1:1 side slopes, constructed on competent foundations. The nonreinforced and reinforced embankment analyses are compared to examine the influence of polymeric reinforcement within a soil slope. It is shown that significant reductions in the shearing, horizontal, and vertical strains within the slope occur because of the presence of the reinforcement.The finite element analysis of the reinforced embankment construction gives the magnitude and distribution of load within the reinforcement. For all embankment heights, the maximum reinforcement load did not occur in the lowest reinforcing layer but in the reinforcing layer placed 0.4H above the foundation, where H is the height of the slope. The displacement patterns and surface deformations of the nonreinforced and reinforced slopes are compared to show the marked reduction in slope movements resulting from the presence of the reinforcement.The location and shape of potential shear surfaces within the homogeneous reinforced slope are examined. The position of the maximum load in each reinforcing layer within the reinforced slope indicates that, for the example studied, a circular-shaped slip surface represents a probable failure mechanism within the slope. Key words: soil reinforcement, geotextiles, finite element, slope stability, geogrids, limit equilibrium, reinforced slope.


Sign in / Sign up

Export Citation Format

Share Document