Control of Cutting Force for Creep-Feed Grinding Processes Using a Multi-Level Fuzzy Controller

2006 ◽  
Vol 129 (4) ◽  
pp. 480-492 ◽  
Author(s):  
Chengying Xu ◽  
Yung C. Shin

In this paper, a multi-level fuzzy control (MLFC) technique is developed and implemented for a creep-feed grinding process. The grinding force is maintained at the maximum allowable level under varying depth of cut, so that the highest metal removal rate is achieved with a good workpiece surface quality. The control rules are generated heuristically without any analytical model of the grinding process. Based on the real-time force measurement, the control parameters are adapted automatically within a stable range. A National Instrument real-time control computer is implemented in an open architecture control system for the grinding machine. Experimental results show that the cycle time has been reduced by up to 25% over those without force control and by 10–20% compared with the conventional fuzzy logic controller, which indicates its effectiveness in improving the productivity of actual manufacturing processes. The effect of grinding wheel wear is also considered in the creep-feed grinding process, where the grinding force/power can be maintained around the specified value by the proposed MLFC controller as the wheel dulls gradually.

2013 ◽  
Vol 442 ◽  
pp. 36-39
Author(s):  
Ke Ma

An experimental study was performed to analyze the feasibility of heat pipe cooling in creep feed grinding applications. A new type of grinding wheel is developed to enhance the heat transfer of the grinding contact zone then decrease the grinding temperature. The performance of the new type grinding wheel was evaluated by measuring the grinding temperature when it was creep feed grinding the Ti-6Al-4V Alloy and the experimental results were compared with an ordinary grinding wheel. Results of the comparative study indicated that the use of enhanced cooling technology in a grinding wheel can decrease the grinding temperature significantly thus avoid the surface burning in grinding.


2022 ◽  
Vol 16 (1) ◽  
pp. 5-11
Author(s):  
Masakazu Fujimoto ◽  
Keisuke Shimizu ◽  
◽  

This paper deals with the microscopic wear characteristics of ceramic (Seeded Gel, SG) grinding wheels used in creep feed grinding. Creep feed grinding experiments with SG grinding wheels were carried out compared to rose-pink alumina (RA) grinding wheels. To clear the wear characteristics of the wheel working surface in creep feed grinding, changes in the shapes of grain cutting edges were observed by a field emission-scanning electron microscope (FE-SEM). This is a self-sharpening phenomenon based on micro fractures generated on the top of SG grain cutting edges. On the other hand, large fracture and attritious wear effected RA grain cutting edges. In addition, the features of any grain cutting edges were evaluated using attritious wear flat percentage. Changes in attritious wear flat percentage of SG grits maintained constant value and were stable. From these results, the influence of wear mode of the grinding wheel on grinding characteristics parameter, such as grinding force and workpiece surface roughness, is understood.


2014 ◽  
Vol 1017 ◽  
pp. 72-77
Author(s):  
Takazo Yamada ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In the grinding process, due to the elastic deformations of grinding machine and grinding wheel, the ground depth of cut is smaller than the applied depth of cut. Consequently, the ground depth of cut has to be controlled in spark-out grinding process. However, the cycle time in spark-out grinding process is not easy to be estimated. From such a viewpoint, in this study, using specific grinding force obtained by measured grinding force in the first spark-out pass, a calculating method of the real ground depth in continuous pass process is proposed. And, this method is experimentally evaluated.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2021 ◽  
Vol 11 (9) ◽  
pp. 4128
Author(s):  
Peng-Zhan Liu ◽  
Wen-Jun Zou ◽  
Jin Peng ◽  
Xu-Dong Song ◽  
Fu-Ren Xiao

Passive grinding is a new rail grinding strategy. In this work, the influence of grinding pressure on the removal behaviors of rail material in passive grinding was investigated by using a self-designed passive grinding simulator. Meanwhile, the surface morphology of the rail and grinding wheel were observed, and the grinding force and temperature were measured during the experiment. Results show that the increase of grinding pressure leads to the rise of rail removal rate, i.e., grinding efficiency, surface roughness, residual stress, grinding force and grinding temperature. Inversely, the enhancement of grinding pressure and grinding force will reduce the grinding ratio, which indicates that service life of grinding wheel decreases. The debris presents dissimilar morphology under different grinding pressure, which reflects the distinction in grinding process. Therefore, for rail passive grinding, the appropriate grinding pressure should be selected to balance the grinding quality and the use of grinding wheel.


2011 ◽  
Vol 496 ◽  
pp. 7-12 ◽  
Author(s):  
Takazo Yamada ◽  
Michael N. Morgan ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In order to obtain the effective depth of cut on the ground surface, a new grinding process model taking into account thermal expansions of the grinding wheel and the workpiece, elastic deformations of the grinding machine, the grinding wheel and the workpiece and the wheel wear was proposed. Using proposed model, the effective depth of cut was calculated using measured results of the applied depth of cut and the normal grinding force.


Author(s):  
Jun-chen Li ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Xiao-fen Liu ◽  
Huang Bo ◽  
...  

Abstract The IC10 superalloy material is one of the most important materials for aero-engine turbine blade due to its excellent performances. However, it is difficult to be machined because of its special properties such as terrible tool wear and low machined efficiency. The creep feed grinding is widely used in machining IC10 superalloy due to the advance in reducing tool wear, improving material removal rate and surface quality. The creep feed grinding is a promising machining process with the advantages of high material removal rate due to large cutting depth, long cutting arc and very slow workpiece, and its predominant features might have significant influence on the grinding force and surface quality for the workpiece. Hence, it is of great importance to study the grinding force and surface integrity in creep feed grinding IC10 superalloy. In this paper, a series of orthogonal experiments have been carried out and the effects of grinding parameters on the grinding force and the surface roughness are analyzed. The topographies and defects of the machined surface were observed and analyzed using SEM. The results of the experiments show that the tangential force is decreased with the workpiece speed increasing. However, there is no significant change in tangential force with the increasing of grinding depth and wheel speed. The normal force is decreased with the workpiece speed increasing when the workpiece speed is less than 150 mm/min, but when the workpiece speed is more than 150 mm/min the normal force is increased tardily. Moreover, the normal force is increased sharply with the increase of grinding depth and is increased slowly with the increase of wheel speed. In general, the surface roughness is increased with workpiece speed and grinding depth increasing, while the trend of increase corresponding that of workpiece speed is more evident. The value of the surface roughness is decreased with wheel speed increasing. And it is found out that the main defect is burning of the IC10 superalloy material in creep feed grinding by energy spectrum analysis of some typical topography in this study.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Amon Gasagara ◽  
Wuyin Jin ◽  
Angelique Uwimbabazi

This article presents a new model of the flat surface grinding process vibration conditions. The study establishes a particular analysis and comparison between the influence of the normal and tangential components of grinding forces on the vibration conditions of the process. The bifurcation diagrams are used to examine the process vibration conditions for the depth of cut and the cutting speed as the bifurcation parameters. The workpiece is considered to be rigid and the grinding wheel is modeled as a nonlinear two-degrees-of-freedom mass-spring-damper oscillator. To verify the model, experiments are carried out to analyze in the frequency domain the normal and tangential dynamic grinding forces. The results of the process model simulation show that the vibration condition is more affected by the normal component than the tangential component of the grinding forces. The results of the tested experimental conditions indicate that the cutting speed of 30 m/s can permit grinding at the depth of cut up to 0.02 mm without sacrificing the process of vibration behavior.


Sign in / Sign up

Export Citation Format

Share Document