A New Software Approach for the Simulation of Multibody Dynamics

2007 ◽  
Vol 2 (3) ◽  
pp. 274-278 ◽  
Author(s):  
Dmitry Vlasenko ◽  
Roland Kasper

This paper introduces a new modular software approach combining symbolical and numerical methods for the simulation of the dynamics of mechanical systems. It is based on an exact, noniterative object-oriented algorithm, which is applicable to mechanisms with any joint type and any topology, including branches and kinematic loops. The simulation of big well-partitioned systems has complexity O(N), where N is the total number of simulated bodies. A new design software Virtual System Designer (VSD) integrates this method with the three-dimensional computer aided design tool Autodesk Inventor, which minimizes the cost of the development of models and the training of design engineers. The most time-expensive routine of the simulation process in VSD is the calculation of the accelerations of each body, which needs to find the roots of matrix equations. Accounting for the sparsity of matrices can significantly improve the numerical efficiency of the routine. The preprocessing module, developed using Maple software, performs the symbolic simplification of the matrix multiplication’s and QR decomposition’s procedures. The new coordinate projection method is demonstrated. The results of the simulation of the dynamics of a double insulator chain example show the method’s stability and effectiveness.

2020 ◽  
Vol 9 (4) ◽  
pp. 20-40
Author(s):  
Vladimir Panchenko

Solar roofing panels fulfill both building protective functions and energy generating ones. The composition of the substrate of the solar roofing panel includes secondary raw materials, which has a positive effect on the environment. To increase the electrical efficiency and also to obtain thermal energy in the form of warm water, it was proposed to create a photovoltaic thermal roofing panel. For this purpose, the presented article describes the method of creating a three-dimensional model of solar photovoltaic thermal modules in a computer-aided design system. The article also proposes a method for manufacturing a prototype body for a solar roofing panel, manufactured using additive technologies, which will significantly reduce costs at the initial stage of creating a prototype due to the possibility of operational changes to a three-dimensional model followed by printing a modified and optimized model. To reduce the number of photovoltaic cells and the cost of a solar roofing panel, it is proposed to use a solar concentrator in the panel.


1986 ◽  
Vol 30 (7) ◽  
pp. 694-698 ◽  
Author(s):  
Keith Case ◽  
J. Mark Porter ◽  
Maurice C. Bonney

Sammie (System for Aiding Man-Machine Interaction Evaluation) is a Computer Aided Design system which provides facilities for ergonomics/human factors evaluation at the earliest stage in the design process. Workplaces, for example the interior of a vehicle or a supermarket checkout, are modelled in three dimensions and presented on a computer graphics screen. A range of techniques are available for interactively modifying the design and for an ergonomie evaluation at each stage by the use of a three-dimensional model of the human operator. This paper describes the facilities available and illustrates the system's usefulness by reference to examples taken from recent design assignments.


The choice of cost-effective method of anticorrosive protection of steel structures is an urgent and time consuming task, considering the significant number of protection ways, differing from each other in the complex of technological, physical, chemical and economic characteristics. To reduce the complexity of solving this problem, the author proposes a computational tool that can be considered as a subsystem of computer-aided design and used at the stage of variant and detailed design of steel structures. As a criterion of the effectiveness of the anti-corrosion protection method, the cost of the protective coating during the service life is accepted. The analysis of existing methods of steel protection against corrosion is performed, the possibility of their use for the protection of the most common steel structures is established, as well as the estimated period of effective operation of the coating. The developed computational tool makes it possible to choose the best method of protection of steel structures against corrosion, taking into account the operating conditions of the protected structure and the possibility of using a protective coating.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2020 ◽  
Vol 174 ◽  
pp. 01048
Author(s):  
Elena Kassikhina ◽  
Vladimir Pershin ◽  
Nina Rusakova

The existing structures of the steel sinking headgear and permanent headframe do not meet the requirements of resource saving (metal consumption and manpower input at installation), and the present methods of the headframe designing do not fully reflect recent possibilities of applying of the advanced information technologies. Technical level of the modern software makes it possible for designers to set up multiple numerical experiments to create a computer simulation that allows solving the problem without field and laboratory experiments, and therefore without special costs. In this regard, a mathematical simulation has been developed and based on it, software to select cross-sections of multi- purpose steel headframe elements and to calculate proper weight of its metal structures depending on the characteristics and hoisting equipment. A headframe drawing is displayed, as the results of the software work, including list of elements, obtained optimal hoisting equipment in accordance with the initial data. The software allows speeding up graphic work and reducing manpower input on calculations and paper work. The software allows developing a three-dimensional image of the structure and its functional blocks, based on the obtained initial parameters, as well as developing control software for units with numerical control (NC) in order to manufacture multi-purpose headframes.


2015 ◽  
Vol 35 (3) ◽  
pp. 269-280 ◽  
Author(s):  
Hu Qiao ◽  
Rong Mo ◽  
Ying Xiang

Purpose – The purpose of this paper is to establish an adaptive assembly, to realize the adaptive changing of the models and to improve the flexibility and reliability of assembly change. For a three-dimensional (3D) computer-aided design (CAD) assembly in a changing process, there are two practical problems. One is delivering parameters’ information not smoothly. The other one is to easily destroy an assembly structure. Design/methodology/approach – The paper establishes associated parameters design structure matrix of related parts, and predicts possible propagation paths of the parameters. Based on the predicted path, structured storage is made for the affected parameters, tolerance range and the calculation relations. The study combines structured path information and all constrained assemblies to build the adaptive assembly, proposes an adaptive change algorithm for assembly changing and discusses the extendibility of the adaptive assembly. Findings – The approach would improve the flexibility and reliability of assembly change and be applied to different CAD platform. Practical implications – The examples illustrate the construction and adaptive behavior of the assembly and verify the feasibility and reasonability of the adaptive assembly in practical application. Originality/value – The adaptive assembly model proposed in the paper is an original method to assembly change. And compared with other methods, good results have been obtained.


Sign in / Sign up

Export Citation Format

Share Document