Influence of Surface Roughness on Non-Newtonian Thermohydrostatic Performance of a Hole-Entry Hybrid Journal Bearing

2007 ◽  
Vol 129 (3) ◽  
pp. 595-602 ◽  
Author(s):  
T. Nagaraju ◽  
Satish C. Sharma ◽  
S. C. Jain

A general solution scheme to account the surface roughness and the cross-film viscosity variation of lubricant due to its non-Newtonian behavior and rise in fluid-film temperature for the analysis of fluid-film bearings is presented. The combined influence of surface roughness, non-Newtonian behavior of lubricant, and thermal effects on the performance of a hole-entry hybrid journal bearing system has been investigated. The surface roughness, especially stationary roughness (i.e., rough bearing and smooth journal) with a transverse pattern was found to partially compensate for the loss in load-carrying capacity due to the thermal and/or non-Newtonian behavior of lubricant effects. It limits 18.86% loss in load-carrying capacity due to the thermal effect to only 1.6% and 33.99% loss due to the combined influence of non-Newtonian lubricant and thermal effect to 16.76%.

Author(s):  
Vivek Kumar ◽  
Satish C Sharma

Surface roughness is inherent to all machining processes. Therefore, even a high precision machining process renders micro-roughness to some extent on the surface of conventional materials. The asperities height of many rough engineering surfaces follows Gaussian distribution. The surface roughness on the bearing surface may significantly affect the bearing performance. Surface texturing is emerging as a new technique to improve the tribological behavior of the mating surfaces. Usually dimensions/height of micro-roughness is of order of the depth of surface textures in fluid film bearings. Neglecting micro-roughness while numerically simulating a textured surface bearing may generate inaccurate bearing performance data. In presented work, finite element simulation of textured surface hybrid thrust bearings has been performed. Surface texture is provided over thrust pad in the form of regular arrays of elliptical dimples. A parametric optimization is carried out to determine optimum attributes of elliptical dimple (axis, depth, texture length and orientation) so that the load-carrying capacity and fluid film stiffness should be maximized and film frictional power losses should be minimized. Use of textured surface (with optimum elliptical dimple attributes) results into a significant enhancement in load-carrying capacity (91.3%), film stiffness coefficient (+98.8%) and reduction in frictional power losses (−48.3%). It is also observed that elliptical dimple and micro-roughness (transverse orientation) generate synergistic effects in further enhancing the load-carrying capacity (+101.4%) and film stiffness coefficient (+112%) of the bearing.


2019 ◽  
Vol 895 ◽  
pp. 152-157 ◽  
Author(s):  
B. Narasimha Rao ◽  
A. Seshadri Sekhar

Magneto Rheological (MR) fluids are a class of smart materials where the shear stress is not directly proportional to rate of shear. The viscosity of fluid changes as magnetic field changes and hence this phenomenon is very useful in bearing-rotor system for attenuating the vibrations. In the present study the application of MR fluid as lubricant instead of Newtonian fluid in the journal bearing is explored through steady state, dynamic characteristics and stability. MR fluid film has been modeled as per Bingham rheological model. FEM with three node triangular elements has been used to solve the Reynolds equation both for the Newtonian fluid film and MR fluid film. The results show the load carrying capacity in the case of MR fluid journal bearing is higher than that of using the Newtonian fluid. The load carrying capacity increases with the increasing magnetic field for all eccentricity ratios. The results also show better stability of the bearing using MR fluid at higher eccentricity ratios. The unbalance response of the rotor mounted on the journal bearing using MR fluid is also estimated to be lower than that of with the Newtonian fluid.


2017 ◽  
Vol 69 (4) ◽  
pp. 574-584 ◽  
Author(s):  
Anil B. Shinde ◽  
Prashant M. Pawar

Purpose This study aims to improve the performance of hydrodynamic journal bearings through partial grooving on the bearing surface. Design/methodology/approach Bearing performance analysis is numerically carried out using the thin film flow physics of COMSOL Multiphysics 5.0 software. Initially, the static performance analysis is carried out for hydrodynamic journal bearing system with smooth surface, and the results of the same are validated with results from the literature. In the later part of the paper, the partial rectangular shape micro-textures are modeled on bearing surface. The effects of partial groove pattern on the bearing performance parameters, namely, fluid film pressure, load carrying capacity, frictional power loss and frictional torque, are studied in detail. Findings The numerical results show that the values of maximum fluid film pressure, load carrying capacity, frictional power loss and frictional torque are considerably improved due to deterministic micro-textures. Bearing surface with partial groove along 90°-180° region results in 81.9 per cent improvement in maximum fluid film pressure and 75.9 per cent improvement in load carrying capacity as compared with smooth surface of journal bearing, with no increase in frictional power loss and frictional torque. Maximum decrease in frictional power loss and frictional torque is observed for partially grooving along 90°-360° region. The simulations are supported by proof-of-concept experimentation. Originality/value This study is useful in the appropriate selection of groove parameters on bearing surface to the bearing performance characteristics.


1991 ◽  
Vol 113 (2) ◽  
pp. 295-302 ◽  
Author(s):  
Young-ze Lee ◽  
K. C. Ludema

The mechanisms of failure of lubricated steel surfaces were investigated. The focus was on two phenomena, namely, the effects of lubricant reactivity and the effects of sliding speed. Experiments were performed with the ball-on-flat and the cylinder-on-flat geometries in the manner of the methods used to develop the failure maps of the (OECD) IRG. Contact resistance and coefficient of friction were measured during the tests and surface roughness was measured frequently during the tests. Surface failure could not be predicted by using the ratio λ (the ratio of fluid film thickness to composite surface roughness) except when chemically inert lubricants are used. Even then the adverse influence of temperature rise on fluid film thickness does not adequately explain the low load carrying capacity of lubricated surfaces at high sliding speeds. There is a separate effect, namely, a quicker and more severe surface roughening at high speeds than at low speeds, which causes surface failure. The protective layers on sliding surfaces that form by chemical reaction with the lubricant were found to reduce the surface roughening and increase the load carrying capacity of surfaces to values of λ as low as 0.03.


Author(s):  
Daniel Müller ◽  
Jens Stahl ◽  
Anian Nürnberger ◽  
Roland Golle ◽  
Thomas Tobie ◽  
...  

AbstractThe manufacturing of case-hardened gears usually consists of several complex and expensive steps to ensure high load carrying capacity. The load carrying capacity for the main fatigue failure modes pitting and tooth root breakage can be increased significantly by increasing the near surface compressive residual stresses. In earlier publications, different shear cutting techniques, the near-net-shape-blanking processes (NNSBP’s), were investigated regarding a favorable residual stress state. The influence of the process parameters on the amount of clean cut, surface roughness, hardness and residual stresses was investigated. Furthermore, fatigue bending tests were carried out using C-shaped specimens. This paper reports about involute gears that are manufactured by fineblanking. This NNSBP was identified as suitable based on the previous research, because it led to a high amount of clean cut and favorable residual stresses. For the fineblanked gears of S355MC (1.0976), the die edge radii were varied and the effects on the cut surface geometry, hardness distribution, surface roughness and residual stresses are investigated. The accuracy of blanking the gear geometry is measured, and the tooth root bending strength is determined in a pulsating test rig according to standardized testing methods. It is shown that it is possible to manufacture gears by fineblanking with a high precision comparable to gear hobbing. Additionally, the cut surface properties lead to an increased tooth root bending strength.


2015 ◽  
Vol 813-814 ◽  
pp. 921-937
Author(s):  
P.S. Rao ◽  
Santosh Agarwal

This paper presents the theoretical study and analyzes the comparison of porous structures on the performance of a couple stress fluid based on rough slider bearing. The globular sphere model of Kozeny-Carman and Irmay’s capillary fissures model have been subjected to investigations. A more general form of surface roughness is mathematically modeled by a stochastic random variable with non-zero mean, variance and skewness. The stochastically averaged Reynolds type equation has been solved under suitable boundary conditions to obtain the pressure distribution in turn which gives the expression for the load carrying capacity, frictional force and coefficient of friction. The results are illustrated by graphical representations which show that the introduction of combined porous structure with couple stress fluid results in an enhanced load carrying capacity more in the case of Kozeny-Carman model as compared to Irmay’s model.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Venkata K. Jasti ◽  
Martin C. Marinack ◽  
Deepak Patil ◽  
C. Fred Higgs

This work demonstrates that granular flows (i.e., macroscale, noncohesive spheres) entrained into an eccentrically converging gap can indeed actually exhibit lubrication behavior as prior models postulated. The physics of hydrodynamic lubrication is quite well understood and liquid lubricants perform well for conventional applications. Unfortunately, in certain cases such as high-speed and high-temperature environments, liquid lubricants break down making it impossible to establish a stable liquid film. Therefore, it has been previously proposed that granular media in sliding convergent interfaces can generate load carrying capacity, and thus, granular flow lubrication. It is a possible alternative lubrication mechanism that researchers have been exploring for extreme environments, or wheel-regolith traction, or for elucidating the spreadability of additive manufacturing materials. While the load carrying capacity of granular flows has been previously demonstrated, this work attempts to more directly uncover the hydrodynamic-like granular flow behavior in an experimental journal bearing configuration. An enlarged granular lubricated journal bearing (GLJB) setup has been developed and demonstrated. The setup was made transparent in order to visualize and video capture the granular collision activity at high resolution. In addition, a computational image processing program has been developed to process the resulting images and to noninvasively track the “lift” generated by granular flow during the journal bearing operation. The results of the lift caused by granular flow as a function of journal rotation rate are presented as well.


Author(s):  
Ravindra Mallya ◽  
Satish B Shenoy ◽  
Raghuvir Pai

The static characteristics of misaligned three-axial water-lubricated journal bearing in the turbulent regime are analyzed for groove angles 36° and 18°. Ng and Pan’s turbulence model is applied to study the turbulence effects in the journal bearing. The static parameters such as load-carrying capacity, friction coefficient, and side leakage are found for different degree of misalignment (DM). The change in flow regime of the lubricant from laminar to turbulent and the increase in misalignment, improved the load capacity of the bearing. For lightly loaded bearings, the friction coefficient of the bearing increased with the increase in Reynolds number.


2012 ◽  
Vol 58 (2) ◽  
Author(s):  
T. V. V. L. N. Rao ◽  
A. M. A. Rani ◽  
T. Nagarajan ◽  
F. M. Hashim

The present study examines the influence of partial texturing of bearing surfaces on improvement in load capacity and reduction in friction coefficient for slider and journal bearing. The geometry of partially textured slider and journal bearing considered in this work composed of a number of successive regions of groove and land configurations. The nondimensional pressure expressions for the partially textured slider and journal bearing are derived taking into consideration of texture geometry and extent of partial texture. Partial texturing has a potential to generate load carrying capacity and reduce coefficient of friction, even for nominally parallel bearing surfaces.


Sign in / Sign up

Export Citation Format

Share Document