Analysis of Magneto Rheological Fluid Journal Bearing

2019 ◽  
Vol 895 ◽  
pp. 152-157 ◽  
Author(s):  
B. Narasimha Rao ◽  
A. Seshadri Sekhar

Magneto Rheological (MR) fluids are a class of smart materials where the shear stress is not directly proportional to rate of shear. The viscosity of fluid changes as magnetic field changes and hence this phenomenon is very useful in bearing-rotor system for attenuating the vibrations. In the present study the application of MR fluid as lubricant instead of Newtonian fluid in the journal bearing is explored through steady state, dynamic characteristics and stability. MR fluid film has been modeled as per Bingham rheological model. FEM with three node triangular elements has been used to solve the Reynolds equation both for the Newtonian fluid film and MR fluid film. The results show the load carrying capacity in the case of MR fluid journal bearing is higher than that of using the Newtonian fluid. The load carrying capacity increases with the increasing magnetic field for all eccentricity ratios. The results also show better stability of the bearing using MR fluid at higher eccentricity ratios. The unbalance response of the rotor mounted on the journal bearing using MR fluid is also estimated to be lower than that of with the Newtonian fluid.

2017 ◽  
Vol 69 (4) ◽  
pp. 574-584 ◽  
Author(s):  
Anil B. Shinde ◽  
Prashant M. Pawar

Purpose This study aims to improve the performance of hydrodynamic journal bearings through partial grooving on the bearing surface. Design/methodology/approach Bearing performance analysis is numerically carried out using the thin film flow physics of COMSOL Multiphysics 5.0 software. Initially, the static performance analysis is carried out for hydrodynamic journal bearing system with smooth surface, and the results of the same are validated with results from the literature. In the later part of the paper, the partial rectangular shape micro-textures are modeled on bearing surface. The effects of partial groove pattern on the bearing performance parameters, namely, fluid film pressure, load carrying capacity, frictional power loss and frictional torque, are studied in detail. Findings The numerical results show that the values of maximum fluid film pressure, load carrying capacity, frictional power loss and frictional torque are considerably improved due to deterministic micro-textures. Bearing surface with partial groove along 90°-180° region results in 81.9 per cent improvement in maximum fluid film pressure and 75.9 per cent improvement in load carrying capacity as compared with smooth surface of journal bearing, with no increase in frictional power loss and frictional torque. Maximum decrease in frictional power loss and frictional torque is observed for partially grooving along 90°-360° region. The simulations are supported by proof-of-concept experimentation. Originality/value This study is useful in the appropriate selection of groove parameters on bearing surface to the bearing performance characteristics.


2003 ◽  
Vol 03 (01) ◽  
pp. 55-70 ◽  
Author(s):  
ALESSANDRO BARATTA ◽  
OTTAVIA CORBI

Magneto-rheological liquids are controllable liquids that under the action of a magnetic field can reversibly pass from the linear viscous liquid state with free-flow to the semi-solid one with a controlled stress-state. They are composed of typically non-colloidal magnetic micronized particles and possess a load carrying capacity higher than other, more controllable, fluids, such as electro-rheological liquids; moreover they are less sensitive to impurities and contaminations that may possibly occur in manufacturing. in the paper, the most suitable models for simulation of such devices are investigated with emphasis on evaluation of their efficiency as structural control systems.


1987 ◽  
Vol 109 (1) ◽  
pp. 100-107 ◽  
Author(s):  
A. Kacou ◽  
K. R. Rajagopal ◽  
A. Z. Szeri

The flow of a homogeneous incompressible non-Newtonian fluid of the differential type between infinite eccentric rotating cylinders is discussed within the context of the lubrication approximation. The problem is studied by means of a perturbation and the effects of the non-Newtonian parameters are delineated. It is found that the load carrying capacity of the bearing can be significantly altered by the non-Newtonian character of the fluid.


1964 ◽  
Vol 86 (3) ◽  
pp. 445-448 ◽  
Author(s):  
D. C. Kuzma

An analysis of a finite journal bearing is presented for the case of an electrically conducting fluid in the presence of a radial magnetic field. The magnetohydrodynamic form of the two-dimensional Reynolds equation is derived and solved numerically for the pressure distribution. The load-carrying capacity and torque are determined from the pressure distribution. Numerical data for nonconducting bearing surfaces are compared with the data from the ordinary journal bearing. It is shown that the load-carrying capacity and torque are increased by the application of the magnetic field.


2007 ◽  
Vol 129 (3) ◽  
pp. 595-602 ◽  
Author(s):  
T. Nagaraju ◽  
Satish C. Sharma ◽  
S. C. Jain

A general solution scheme to account the surface roughness and the cross-film viscosity variation of lubricant due to its non-Newtonian behavior and rise in fluid-film temperature for the analysis of fluid-film bearings is presented. The combined influence of surface roughness, non-Newtonian behavior of lubricant, and thermal effects on the performance of a hole-entry hybrid journal bearing system has been investigated. The surface roughness, especially stationary roughness (i.e., rough bearing and smooth journal) with a transverse pattern was found to partially compensate for the loss in load-carrying capacity due to the thermal and/or non-Newtonian behavior of lubricant effects. It limits 18.86% loss in load-carrying capacity due to the thermal effect to only 1.6% and 33.99% loss due to the combined influence of non-Newtonian lubricant and thermal effect to 16.76%.


1963 ◽  
Vol 85 (3) ◽  
pp. 424-427 ◽  
Author(s):  
Dennis C. Kuzma

An analysis of an infinite journal bearing is presented for the case of an electrically conducting fluid in the presence of a magnetic field. The magnetohydrodynamic form of Reynolds’ bearing equation is derived and solved for the pressure distribution. The load carrying capacity is determined from the pressure distribution. Numerical data are presented for nonconducting bearing surfaces. These data are compared with the data from the ordinary journal bearing. It is shown that the load carrying capacity is increased by the application of a magnetic field.


Author(s):  
Vivek Kumar ◽  
Satish C Sharma

Surface roughness is inherent to all machining processes. Therefore, even a high precision machining process renders micro-roughness to some extent on the surface of conventional materials. The asperities height of many rough engineering surfaces follows Gaussian distribution. The surface roughness on the bearing surface may significantly affect the bearing performance. Surface texturing is emerging as a new technique to improve the tribological behavior of the mating surfaces. Usually dimensions/height of micro-roughness is of order of the depth of surface textures in fluid film bearings. Neglecting micro-roughness while numerically simulating a textured surface bearing may generate inaccurate bearing performance data. In presented work, finite element simulation of textured surface hybrid thrust bearings has been performed. Surface texture is provided over thrust pad in the form of regular arrays of elliptical dimples. A parametric optimization is carried out to determine optimum attributes of elliptical dimple (axis, depth, texture length and orientation) so that the load-carrying capacity and fluid film stiffness should be maximized and film frictional power losses should be minimized. Use of textured surface (with optimum elliptical dimple attributes) results into a significant enhancement in load-carrying capacity (91.3%), film stiffness coefficient (+98.8%) and reduction in frictional power losses (−48.3%). It is also observed that elliptical dimple and micro-roughness (transverse orientation) generate synergistic effects in further enhancing the load-carrying capacity (+101.4%) and film stiffness coefficient (+112%) of the bearing.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
Venkata K. Jasti ◽  
Martin C. Marinack ◽  
Deepak Patil ◽  
C. Fred Higgs

This work demonstrates that granular flows (i.e., macroscale, noncohesive spheres) entrained into an eccentrically converging gap can indeed actually exhibit lubrication behavior as prior models postulated. The physics of hydrodynamic lubrication is quite well understood and liquid lubricants perform well for conventional applications. Unfortunately, in certain cases such as high-speed and high-temperature environments, liquid lubricants break down making it impossible to establish a stable liquid film. Therefore, it has been previously proposed that granular media in sliding convergent interfaces can generate load carrying capacity, and thus, granular flow lubrication. It is a possible alternative lubrication mechanism that researchers have been exploring for extreme environments, or wheel-regolith traction, or for elucidating the spreadability of additive manufacturing materials. While the load carrying capacity of granular flows has been previously demonstrated, this work attempts to more directly uncover the hydrodynamic-like granular flow behavior in an experimental journal bearing configuration. An enlarged granular lubricated journal bearing (GLJB) setup has been developed and demonstrated. The setup was made transparent in order to visualize and video capture the granular collision activity at high resolution. In addition, a computational image processing program has been developed to process the resulting images and to noninvasively track the “lift” generated by granular flow during the journal bearing operation. The results of the lift caused by granular flow as a function of journal rotation rate are presented as well.


Author(s):  
Ravindra Mallya ◽  
Satish B Shenoy ◽  
Raghuvir Pai

The static characteristics of misaligned three-axial water-lubricated journal bearing in the turbulent regime are analyzed for groove angles 36° and 18°. Ng and Pan’s turbulence model is applied to study the turbulence effects in the journal bearing. The static parameters such as load-carrying capacity, friction coefficient, and side leakage are found for different degree of misalignment (DM). The change in flow regime of the lubricant from laminar to turbulent and the increase in misalignment, improved the load capacity of the bearing. For lightly loaded bearings, the friction coefficient of the bearing increased with the increase in Reynolds number.


Sign in / Sign up

Export Citation Format

Share Document