An Interfacial Delamination Analysis for Multichip Module Thin Film Interconnects

1996 ◽  
Vol 118 (4) ◽  
pp. 206-213 ◽  
Author(s):  
K. X. Hu ◽  
C. P. Yeh ◽  
X. S. Wu ◽  
K. Wyatt

Analysis of interfacial delamination for multichip module thin-film interconnects (MCM/TFI) is the primary objective of this paper. An interface crack model is integrated with finite-element analysis to allow for accurate numerical evaluation of the magnitude and phase angle of the complex stress intensity factor. Under the assumption of quasi-static delamination growth, the fate of an interfacial delamination after inception of propagation is determined. It is established that whether an interfacial delamination will continue to grow or become arrested depends on the functional behavior of the energy release rate and loading phase angle over the history of delamination growth. This functional behavior is numerically obtained for a typical MCM/TFI structure with delamination along die and via base, subjected to thermal loading condition. The effect of delamination interactions on the structural reliability is also investigated. It is observed that the delamination along via wall and polymer thin film can provide a benevolent mechanism to relieve thermal constraints, leading to via stress relaxation.

Author(s):  
Tz-Cheng Chiu ◽  
Huang-Chun Lin

The interface crack problem in integrated circuit devices was considered by using global and local modeling approach. In the global analysis the thin film interconnect was modeled by a homogenized layer with material constants obtained from representative volume element (RVE) analysis. Local analyses were then considered to determine fracture mechanics parameters. It was shown that the multiscale model with RVE approach gives accurate fracture mechanics parameters for an interface crack under either thermal or mechanical loads; while significant error was observed when the thin film layers are ignored in the global analysis. The problem of an interface crack between low-k dielectric and etch-stop thin film in a flip-chip package under thermal loading was also investigated as an application example of the multiscale modeling.


2004 ◽  
Vol 126 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Samuel I-En Lin

Thermal residual plastic deformation of bond joints on thin film based DWDM module under thermal cycles loading was investigated using three-dimensional finite element analysis. Finite element simulations were carried out to investigate the effect of the 4 and 6 solder-joint designs for the metal tube with 0.1 mm alignment offset. It was found that 6-solder joint requires more thermal cycles to arrive a stable tilt angle. The transverse movement of metal tube under thermal loading was also examined to determine the influence of solder volume imperfections and solder materials. Favorable results were obtained for 80Au20Sn solder as compared to 63Sn37Pb solder. From the thermal-elasto-plastic analysis, the solder volume control has great impact on the metal tube movement and tilt angle during thermal loadings. If adequate solder volume is provided in four solder joints, the minimum alignment shift of the metal tube is projected to be comparable to an optimally designed bond joint geometry.


Author(s):  
Minshu Zhang ◽  
S. W. Ricky Lee ◽  
Xuejun Fan

Interfacial delamination is a major reliability issue of Quad Flat No-lead (QFN) packages under the JEDEC-MSL preconditioning and reflow process. Failures will occur when the hygrothermal stress exceeds the interfacial strength. Simulation based on finite element model is a popular method for studying the failure mechanism. However, the non-accurate material properties and the lack of experiment validations always constrain the Finite Element Analysis (FEA) at the artificial parametric study stage. To further investigate the interfacial delamination, a complex system including both simulation and experiment validation is established in this study. A dummy QFN is fabricated first as the test vehicle for the subsequent study. Then the related finite element model is built to reveal the interfacial stress distribution when the packages are subjected to the pure thermal loading and hygrothermal loading, respectively. Once the interfacial stress is derived, the strength approach is applied here to indicate the high risk area where delamination will occur. Finally, the analyses from simulation are verified by Moisture Sensitivity Level (MSL) tests using dummy samples. In this paper, a superposition method is used to integrate the thermo-mechanical and hygro-mechanical stress, with considering the non-uniform moisture distribution during reflow. Such a method is different from the previously method in literature. Results show that the shear stress is dominant along all the interfaces. From the comparison between simulation and experiments, the strength approach is applied to evaluate the package reliability successfully. Both simulation and experiment results show that the molding compound/lead-frame interface around the junction of die attach fillet would be the initiation of delamination.


Author(s):  
Michel Arnal ◽  
Christian Precht ◽  
Thomas Sprunk ◽  
Tobias Danninger ◽  
John Stokes

The present paper outlines a practical methodology for improved virtual prototyping, using as an example, the recently re-engineered, internally-cooled 1st stage blade of a 40 MW industrial gas turbine. Using the full 3-D CAD model of the blade, a CFD simulation that includes the hot gas flow around the blade, conjugate heat transfer from the fluid to the solid at the blade surface, heat conduction through the solid, and the coolant flow in the plenum is performed. The pressure losses through and heat transfer to the cooling channels inside the airfoil are captured with a 1-D code and the 1-D results are linked to the three-dimensional CFD analysis. The resultant three-dimensional temperature distribution through the blade provides the required thermal loading for the subsequent structural finite element analysis. The results of this analysis include the thermo-mechanical stress distribution, which is the basis for blade life assessment.


Author(s):  
Muhammad Abid ◽  
Javed A. Chattha ◽  
Kamran A. Khan

Performance of a bolted flange joint is characterized mainly by its ‘strength’ and ‘sealing capability’. A number of analytical and experimental studies have been conducted to study these characteristics only under internal pressure loading. In the available published work, thermal behavior of the pipe flange joints is discussed under steady state loading with and without internal pressure and under transient loading condition without internal pressure. The present design codes also do not address the effects of steady state and thermal transient loading on the structural integrity and sealing ability. It is realized that due to the ignorance of any applied transient thermal loading, the optimized performance of the bolted flange joint can not be achieved. In this paper, in order to investigate gasketed joint’s performance i.e. joint strength and sealing capability under combined internal pressure and transient thermal loading, an extensive nonlinear finite element analysis is carried out and its behavior is discussed.


2006 ◽  
Vol 306-308 ◽  
pp. 1151-1156 ◽  
Author(s):  
Chong Du Cho ◽  
Heung Shik Lee ◽  
Chang Boo Kim ◽  
Hyeon Gyu Beom

In this paper, a finite element code especially for micro-magnetostrictive actuators was developed. Two significant characteristics of the presented finite element code are: (1) the magnetostrictive hysteresis phenomenon is effectively taken into account; (2) intrinsic geometric feature of typical thin film structures of large length to thickness ratio, which makes it very difficult to construct finite element mesh in the region of the thin film, is considered reasonably in modeling micro-magneostrictive actuators. For verification purpose, magnetostrictive thin films were fabricated and tested in the form of a cantilevered actuator. The Tb-Fe film and Sm-Fe film are sputtered on the Si and Polyimide substrates individually. The magnetic and magnetostrictive properties of the sputtered magnetostrictive films are measured. The measured magnetostrictive coefficients are compared with the numerically calculated ones.


Sign in / Sign up

Export Citation Format

Share Document