Comparison and Validation of Dynamics Simulation Models for a Structurally Flexible Manipulator

1998 ◽  
Vol 120 (3) ◽  
pp. 404-409 ◽  
Author(s):  
Jeff Stanway ◽  
Inna Sharf ◽  
Chris Damaren

This paper presents a series of experimental results obtained with a 2-DOF flexible-link direct-drive manipulator. First, we conduct a frequency analysis by comparing experimental natural frequencies with those predicted by the finite element model. Then, the time responses from four dynamics models are compared with each other and with the experiment. It is demonstrated that higher order nonlinearities are less important for slow maneuvers by close agreement between all four simulation models. For fast maneuvers, the two simpler models fail to predict a physically meaningful response. Good agreement with experimental results is attained with a model which accounts for all inertial nonlinearities. It is also shown that inclusion of damping in the dynamics models has a significant impact on their performance, as well as improving the correlation with experimental data.

2016 ◽  
Vol 858 ◽  
pp. 913-916 ◽  
Author(s):  
Konstantinos Zekentes ◽  
Konstantin Vassilevski ◽  
Antonis Stavrinidis ◽  
George Konstantinidis ◽  
Maria Kayambaki ◽  
...  

Purely vertical 4H-SiC JFETs have been modeled by using three different approaches: the analytical model, the finite element model and the compact model. The results of the modeling have been compared with experimental results on a series of fabricated self-aligned devices with two different channel lengths (0.3 and 1.1μm) and various channel widths (1.5, 2, 2.5, 3, 4 and 5 μm). For all the considered models I-V and C-V characteristics could be satisfactorily simulated.


2007 ◽  
Vol 539-543 ◽  
pp. 3319-3325
Author(s):  
Man Soon Yoon ◽  
T.S. Yoon ◽  
J.R. Kim ◽  
Y.G. Choi ◽  
Soon Chul Ur

The electromechanical properties of a newly proposed 3-dimensional piezoelectric transformer have been investigated. Especially, the effects of 3-dimensional geometry on the maximum tip displacement were carefully investigated. As a result, it was found that the maximum strain of the 3-dimensional piezoelectric device was significantly enhanced up to 4.5 times higher than that of a disk shape device. This data were in good agreement with the finite element model analysis of strains and vibration modes. Moreover, a very high voltage step-up ratio of 290 (10 times higher than the Rosen type), sustaining efficiency more than 96%, were achieved.


2011 ◽  
Vol 264-265 ◽  
pp. 1444-1449
Author(s):  
K.M. Adel ◽  
E.K. Ekhlas ◽  
S.H. Shaker

A three dimensional FE modeling of the laser surface modification is presented. The design capabilities of the ANSYS (11) software were employed for this purpose. The model calculates the dimensions of melting zone and heat affected zone. Model simulations are compared with experimental results that showed very good agreement. A one dimensional model in V.B language was presented too. The model based on conduction of heat in one dimension neglecting the other losses of heat. The results of VISUAL BASIC were compared with experimental results which showed a very good agreement. The two methods were compared with each other to showing which method have a good prediction compared with experimental results in calculating of fusion zone and heat affected zone "HAZ".


2007 ◽  
Vol 534-536 ◽  
pp. 1441-1444 ◽  
Author(s):  
Man Soon Yoon ◽  
Y.G. Choi ◽  
Soon Chul Ur

The electromechanical properties of a newly proposed 3-dimensional piezoelectric actuator have been investigated. Especially, the effects of 3-dimensional geometry on the maximum tip displacement were carefully investigated. As a result, it was found that the maximum strain of the 3-dimensional piezoelectric device was significantly enhanced up to 4.5 times higher than that of a disk shape device. This data was in good agreement with the finite element model analysis of strains and vibration modes. Moreover, the field -induced displacement stability of dome-shaped 3- dimensional piezoelectric actuator at various ac freguencies was superior to Rainbow actuator.


2014 ◽  
Vol 496-500 ◽  
pp. 601-604
Author(s):  
Jing Wang ◽  
Yong Wang ◽  
Ying Hua Liao

In this paper, the modal of motorcycle frame is analyzed by using the analytic method and experimental method. The results show that the dynamic properties of the finite element model are in good agreement with the experiment and the finite element model was reliable and accurate.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Ming Liu ◽  
Jun Liu ◽  
Yuansheng Cheng

An analytical method is presented for the free vibration of a fluid loaded (submerged) ring-stiffened conical shell with variable thickness in the low frequency range. Based on the Flügge theory and equivalent method of ring-stiffeners, the governing equations of vibration of a ring-stiffened conical shell are developed in the form of a coupled set of the first order differential equations. Fluid loading is taken into account by dividing the shell into narrow strips which are considered to be locally cylindrical. Analytical solutions are presented by using the transfer matrix method, which is suitable for structures broken into a sequence of subsystems that interact only with adjacent subsystems. By comparing the results from the present method and the finite element model, good agreement are obtained. The effects of the spacing of the stiffeners, the shell thickness, the shell thickness ratio, the ring's height, and the boundary conditions on the natural frequencies of the fluid loaded ring-stiffened conical shell with variable thickness are discussed.


2015 ◽  
Vol 9 (1) ◽  
pp. 205-212 ◽  
Author(s):  
Fang Xiaoming ◽  
Yan Zhichao ◽  
Wang Liquan ◽  
Huang Yuxuan

Riser system is a key equipment for offshore oil and gas development. When conducting riser design, fatigue failure mode is the chief one among the many failure modes which should be taken into account. To assess the fatigue performance of riser accurately, it is necessary to conduct fatigue tests. Resonant bending fatigue test is one effective method for fatigue tests of risers. In this paper, the principle of resonant bending fatigue test and test procedures are presented firstly, and then a finite element model using ABAQUS is created to simulate the resonant bending fatigue test, and the results from the finite element model are compared with the experimental results. The good agreements between the FEM results and experimental results verify the accuracy of the finite element model in this paper.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Peng-Fei Sun ◽  
Hong-Wu Huang ◽  
Shui-Ting Zhou ◽  
Yi-Jui Chiu ◽  
Meng Du ◽  
...  

This paper elaborates on the production mechanisms of standing waves during high-speed tire rolling and analyzes the relationship between the change of wavelength of sidewall waves and the vehicle velocity, from an oblique wave point of view. A finite element model for a 195/65R15 radial tire is established with the nonlinear analysis software ABAQUS, based on the tire structure and cord parameters. This paper comparatively analyzes the finite element simulation results and experimental results of the tire load-sinkage relation and the load vs inflatable section width relation and finds little difference between the simulation and experimental results. A similar analysis studies the change in the wavelength of sidewall standing waves at different vehicle velocities during high-speed tire rolling. The calculated value by the oblique wave approach, the value by simulation, and the experimental results demonstrate high consistency, concluding that during high-speed tire rolling, the wavelength of sidewall standing waves increases with vehicle velocity. Thus, the accuracy of the finite element model is verified under both static and dynamic conditions. Under a constant tire pressure and load, the impact of velocity change on tire-cord stress during high-speed tire rolling is studied based on the finite element model so as to identity the relation between the cord stress and standing waves.


2011 ◽  
Vol 199-200 ◽  
pp. 1126-1129
Author(s):  
Su Fang Fu ◽  
Han Gao ◽  
Jia Xi Du ◽  
Qiu Ju Zhang ◽  
Xue Ming Zhang ◽  
...  

In this paper, the finite element model for the cabinet of a drum washing machine and the model for testing vibration of the cabinet were developed in ANSYS software and PULSE™, respectively. A series of tests were conducted. The natural frequencies and mode shapes were obtained by finite element analysis and modal experiment, which revealed weak parts of the cabinet. Meanwhile, the computational modes were in good agreement with experimental ones and this could provide an available method by which it was convenient to improve the design of the cabinet.


2013 ◽  
Vol 594-595 ◽  
pp. 909-913
Author(s):  
A.B. Abdullah ◽  
Z. Samad

Recently, manufacturing process simulation using finite element (FE) model become important. Therefore, validation of the finite element model is crucial. This study will present validation of 2D finite element simulation of cold heading at room temperature. Validation of the simulation model is carried out by comparing the resulted bulge profile of the cold upsetting specimen to the profile of the specimen, which is obtained from an optical 3D surface measurement technique namely Infinite Focus Alicona system. Based on the result, both profiles show a very good agreement.


Sign in / Sign up

Export Citation Format

Share Document