Modeling Piston-Ring Dynamics, Blowby, and Ring-Twist Effects

1998 ◽  
Vol 120 (4) ◽  
pp. 843-854 ◽  
Author(s):  
T. Tian ◽  
L. B. Noordzij ◽  
V. W. Wong ◽  
J. B. Heywood

A ring-dynamics and gas-flow model has been developed to study ring/groove contact, blowby, and the influence of ring static twist, keystone ring/groove configurations, and other piston and ring parameters. The model is developed for a ring pack with three rings. The dynamics of the top two rings and the gas pressures in the regions above the oil control ring are simulated. Distributions of oil film thickness and surface roughness on the groove and ring surfaces are assumed in the model to calculate the forces generated by the ring/groove contact. Ring static and dynamic twists are considered, as well as different keystone ring/groove configurations. Ring dynamics and gas flows are coupled in the formulation and an implicit scheme is implemented, enabling the model to resolve detailed events such as ring flutter. Studies on a spark ignition engine found that static twist or, more generally speaking, the relative angle between rings and their grooves, has great influence on ring/groove contact characteristics, ring stability, and blowby. Ring flutter is found to occur for the second ring with a negative static twist under normal operating conditions and for the top ring with a negative static twist under high-speed/low-load operating conditions. Studies on a diesel engine show that different keystone ring/groove configurations result in different twist behaviors of the ring that may affect the wear pattern of the keystone ring running surfaces.

Author(s):  
T Tian

This paper describes the physics of two major dynamic behaviours of the piston rings, namely ring flutter and ring collapse, and their effects on gas flow and oil transport. The analysis was conducted by applying a theoretical model in a spark ignition engine and a heavy-duty diesel engine. Parameters that have great influence on these dynamic behaviours are discussed for these two different types of engine and different rings. Specifically, the importance of ring twist, torsional stiffness and ring-groove clearance to ring flutter are discussed in detail. For ring radial collapse, the paper presents a simple formula that determines value of the critical parameters to eliminate ring radial collapse. Emphases are placed on the importance of mechanical designs in changing the performance of the piston ring pack in blowby and oil consumption.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB, the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


Author(s):  
M. Vardelle ◽  
P. Fauchais ◽  
A. Vardelle ◽  
A.C. Léger

Abstract A study of the flattening and cooling of particles plasma-sprayed on a substrate is presented. The characteristic parameters of the splats are linked to the parameters of the impacting particles by using an experimental device consisting of a phase Doppler particle analyzer and a high-speed pyrometer. However, during the long experiments required to get reliable correlations, it was observed that variations in plasma spray operating conditions may alter the particles behavior in the plasma jet. Therefore, a simple and easy-to-use system was developed to control in real time the spray jet. In this paper, the effect of carrier gas flow rate, arc current and powder mass flow rate is investigated. The results on zirconia and alumina powders show the capability of the technique to sense the particle spray position and width.


2019 ◽  
Vol 298 ◽  
pp. 00009
Author(s):  
M.S. Ostapenko ◽  
M.A. Popova ◽  
A.M. Tveryakov

In this paper, we evaluate the method of finding the relative error of gas flow meters taking into account the influence coefficients. A literature analysis was carried out, which showed that flow meters are used at oil and gas enterprises, which show its metrological characteristic, showing specific values of gas flow in operating conditions. Various types of gas flow meters are considered, with a description of the quality indicators of the devices. An additional error was investigated depending on changes in operating conditions. The calculations of the relative error of the meter taking into account the limiting values of the additional errors indicated in the technical documentation, as well as calculations taking into account the coefficients of influence under operating conditions. Based on the obtained values of the influence coefficients, graphs were constructed on which the effect of temperature and pressure on the error was determined. The article provides tabular values of the influence coefficients for petroleum gas, a conclusion is drawn on the applicability of this method.Oil and gas industry have a great influence on development of national economy in our country. Oil and gas have a leading position in energy industry and they are more effective and energy-intense in comparison with other natural substances.


Author(s):  
Elman Kh. Iskandarov

The multi-phase and different composition of gas flows during the development of offshore oil and gas-condensate fields leads to high costs of energy in the system of in-field storage and transportation of well products. The analysis of the existing storage and transportation systems of gas-condensate mixtures shows that the geophysical nature and complexity of the internal structure of the transported fluids must be taken into account when choosing the mode parameters and calculation schemes of the pipelines. High-speed gas lines can be operated in a so-called "dry" mode, in which the liquid is carried along with the gas, the pipeline profile is relatively straight, without ups and downs. In this case, the formation of so-called "stagnant zones" in the pipeline is excluded. However, if the processing depth of the gas does not allow it to be transported in a single-phase state, then the condensing gas factor manifests itself. The hydraulic characteristics of vertical ups and downs on offshore pipelines are complicated, and pipelines are often filled with water and condensate. As a result, the pressure in the pipeline increases and the location of the collection point for condensing gases away from the production site can cause major problems. If we characterize oil and gas-condensate flows as a dynamic system in which alternating structural changes take place, the question of whether these systems are fractal is of great scientific interest. Based on the change in the fractal value, it is possible to diagnose structural changes during the transportation of various systems, including condensing gases in the pipelines. In this article the modes of change of basic parameters of a gas flow (pressure, flow rate and temperature) on various lines of a gas pipeline for the purpose of the producing of diagnostic criterion for revealing of liquid inclusions as a part of transported gas are investigated in this article. It is established, that in the presence of liquid inclusions at movement of gas flows there are the structural changes peculiar to fluid systems, systems which can be identified by variations of fractal dimensions of flowcharacteristics. Studies have shown that the study of the dynamics of structural changes in gas flows can play a role in diagnosing the formation of liquid phase embryos in gas pipelines. For this purpose, diagnostics for the movement of gas streams accompanied by liquid deposits in the pipelines has been proposed.


Author(s):  
Ameen Malkawi ◽  
Ahmed AlAdawy ◽  
Rajesh Kumar V. Gadamsetty ◽  
Rafael Lastra Melo

Abstract Downhole gas compression technology is an artificial lift method that aims to boost production, maximize recovery and delay onset of liquid loading in gas wells. There are different available compression technologies that can be considered for downhole applications, such as screw, scroll, centrifugal and axial compressors. Selection of the appropriate type mainly depends on expected well performance, ambient conditions, compressor operating envelope, technology characteristics, limitations and size constraints. The objective of this study is to perform a feasibility evaluation of compression solutions applicable for a given set of candidate gas wells. Aerodynamic and hydraulic models are used to determine operating conditions, compressor performance, and to select equipment specifications such as impeller diameter, compressor envelope, shaft HP requirement and number of stages among other parameters. A Pugh analysis is performed for all compression technologies and their characteristics to down-select the most suitable solutions for the given set of wells. The results of the analysis indicated an optimal downhole compression technology that covers most of the gas flow rate requirements and meet the performance expectations. The study also provided critical specifications for the compressor, including high-speed operation needed to provide the required flow rates and compression ratio for a relatively small housing diameter. The study also finds that other technologies may be applicable but only to certain population of wells, as the flow rate spectrum is narrower than the optimal solution at the studied conditions. The analysis for the discarded compression technologies in this study showed relatively significant disadvantages for downhole application when compared to the selected compressor. This study presents a holistic analysis for compression technology selection for gas wells that, as per to the understanding of the authors, is unique in the existing literature of gas well applications.


Author(s):  
Jingjing Luo ◽  
Dieter Brillert

Abstract Dry gas lubricated non-contacting mechanical seals (DGS), most commonly found in centrifugal compressors, prevent the process gas flow into the atmosphere. Especially when high speed is combined with high pressure, DGS is the preferred choice over other sealing alternatives. Even though the non-contacting seal is proved reliable; the ultra-thin gas film can still lead to a host of potential problems due to possible contact. In order to investigate the flow field in the sealing gap and to facilitate the numerical prediction of the seal performance, a dedicated test facility is developed to carry out the measurement of key parameters in the gas film. Gas in the sealing film varies according to the seal inlet pressure, and the thickness of gas film depends on this fluctuated pressure. In this paper, the test facility, measurement methods and the first results of static pressure measurements in the sealing gap of the DGS obtained in the described test facility are presented. An industry DGS with three-dimensional grooves on the surface of the rotating ring, where experimental investigations take place, is used. The static pressure in the gas film is measured, up to 20 bar and 8,100 rpm, by several high frequency ultraminiature pressure transducers embedded into the stationary ring. The experimental results are discussed and compared with the numerical model programmed in MATLAB [1], the characteristic and magnitude of which have a good agreement with the numerical simulations. It suggests the feasibility of measuring pressure profiles of the standard industry DGS under pressurized dynamic operating conditions without altering the key components of the seal and thereby affecting the seal performance.


2017 ◽  
Vol 139 (7) ◽  
Author(s):  
Mohamad Taghi Esfidani ◽  
Mohammad Reza Oshaghi ◽  
Hossein Afshin ◽  
Bahar Firoozabadi

This investigation presents both theoretical and experimental studies on the size of a growing bubble in power-law non-Newtonian liquids. At first, some previous works on the prediction of bubble size in Newtonian liquids have been extended by considering the balance of forces acting on the bubble at the moment of separation. Predicted bubble sizes were validated against the experimental results for a wide range of operating conditions, including different gas flow rates and needle diameters as well as a wide range of physical properties of the Newtonian liquids. Furthermore, in order to determine the size of the bubbles formed in power-law non-Newtonian liquids with a similar analysis, the effective shear rate of bubble growth was calculated in which the rheological properties of fluid were taken into account and subsequently the viscosity of the fluid was modified. Theoretically obtained bubble sizes for non-Newtonian liquids are in a good agreement with our experimental high-speed video observations of three carboxyl methyl cellulose (CMC) solutions.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 478
Author(s):  
Andrzej J. Osiadacz ◽  
Marta Gburzyńska

The main aim of simulation programs is to study the behavior of gas pipe networks in certain conditions. Solving a specified set of differential equations describing transient (unsteady) flow in a gas pipeline for the adopted parameters of load and supply will help us find out the value of pressure or flow rate at selected points or along selected sections of the network. Transient gas flow may be described by a set of simple or partial differential equations classified as hyperbolic or parabolic. Derivation of the mathematical model of transient gas flow involves certain simplifications, of which one-dimensional flow is most important. It is very important to determine the conditions of pipeline/transmission network operation in which the hyperbolic model and the parabolic model, respectively, should be used. Parabolic models can be solved numerically in a much simpler way and can be used to design simulation programs which allow us to calculate the network of any structure and any number of non-pipe elements. In some conditions, however, they describe the changes occurring in the network less accurately than hyperbolic models do. The need for analysis, control, and optimization of gas flows in high-pressure gas pipelines with complex structure increases significantly. Very often, the time allowed for analysis and making operational decisions is limited. Therefore, efficient models of unsteady gas flows and high-speed algorithms are essential.


Author(s):  
Alexander Osiptsov ◽  
Irina Golubkina ◽  
Oyuna Rybdylova

The effect of aerodynamic focusing of microparticles in gas-particle flows is employed mainly for creating collimated particle beams. These beams are used in various technical applications, such as coating, “direct-write”, surface processing technologies, needle-free injections, etc. In this study, we propose and investigate two new flow schemes in which the effect of aerodynamic focusing of small low-inertia particles may be realized in high-speed gas flows with shock waves. The first one is a steady-state dusty-gas flow behind the point of interaction of two crossing shock waves. The convergence of the carrier-phase streamlines and the presence of particle inertia result in the formation of a high-concentration particle beam behind the shock interaction point. In the second flow scheme considered, the particle focusing effect is attributable to the action of the Saffman lateral force, exerting on the particles in boundary layers behind a shock wave travelling in a narrow channel with a constant cross-section. In both cases, the ranges of governing parameters are found for which the focusing is “optimal”, i.e. a very thin collimated beam of microparticles is formed.


Sign in / Sign up

Export Citation Format

Share Document