Metrics for Assessing Design Freedom and Information Certainty in the Early Stages of Design

1998 ◽  
Vol 120 (4) ◽  
pp. 628-635 ◽  
Author(s):  
T. W. Simpson ◽  
D. Rosen ◽  
J. K. Allen ◽  
F. Mistree

Our primary focus in this paper is on open engineering systems. Developing ranged sets (as opposed to point sets) of top-level design specifications is a means to enhance openness and system flexibility by increasing design knowledge while maintaining design freedom. Consequently, our secondary focus in this paper is on metrics for assessing the design freedom and information certainty associated with a ranged set of top-level design specifications. As a demonstration, these metrics are applied to an example problem, namely, the conceptual design of a family of aircraft. Our emphasis in this paper is on introducing open engineering systems and metrics for design freedom and information certainty, and not on the example, per se.

Author(s):  
Timothy W. Simpson ◽  
David Rosen ◽  
Janet K. Allen ◽  
Farrokh Mistree

Abstract Our primary focus in this paper is on open engineering systems which are readily adaptable to changing design requirements. Designing an open engineering system allows a family of products to be developed around a common baseline model. This entails increasing design freedom and design knowledge during the early stages of design. Toward this end, developing ranged sets (as opposed to points sets) of top-level design specifications provides a means to improve system flexibility by increasing design knowledge while maintaining design freedom. Consequently, our secondary focus in this paper is on metrics for assessing the design freedom and information certainty associated with a ranged set of top-level design specifications. As a demonstration, these metrics are applied to an example problem, namely, the conceptual design of a family of aircraft. Our emphasis in this paper is on introducing open engineering systems and metrics for design freedom and information certainty, not on our example, per se.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1825
Author(s):  
Caiyang Wei ◽  
Theo Hofman ◽  
Esin Ilhan Caarls

For an electric vehicle (EV) with a continuously variable transmission (CVT), a novel convex programming (CP)-based co-design method is proposed to minimize the total-cost-of-ownership (TCO). The integration of the electric machine (EM) and the CVT is the primary focus. The optimized system with co-design reduces the TCO by around 5.9% compared to a non-optimized CVT-based EV (based on off-the-shelf components) and by around 2% compared to the EV equipped with a single-speed transmission (SST). By taking advantage of the control and design freedom provided by the CVT, the optimal CVT, EM and battery sizes are found to reduce the system cost. It simultaneously finds the optimal CVT speed ratio and air-flow rate of the cooling system reducing the energy consumption. The strength of co-design is highlighted by comparing to a sequential design, and insights into the design of a low-power EV that is energy-efficient and cost-effective for urban driving are provided. A highly integrated EM-CVT system, which is efficient, low-cost and lightweight, can be expected for future EV applications.


Author(s):  
Roberto Simoni ◽  
Henrique Simas ◽  
Daniel Martins

This paper presents an application of symmetry and connectivity to select kinematic structures of parallel manipulators. One kinematic chain can originate several mechanisms and each mechanism can originate several parallel manipulators and, in early stages of conceptual design, it is difficult to decide what is the most promising one. Hunt [1] introduced the concept of connectivity and, since then, the connectivity has been used as an important parameter to select the most appropriated parallel manipulators to develop determined task. However, it is difficult to analyze non isomorphic parallel manipulators from the connectivity matrix. In this sense, in this paper, we apply symmetry to reduce the set of parallel manipulators to a manageable few with the desired connectivity. As a result, all promising parallel manipulators originating from a kinematic chain can be analyzed without isomorphisms.


Author(s):  
Zhan-Song Wang ◽  
Ling Tian ◽  
Yuan-Hao Wu ◽  
Bei-Bei Liu

Existing knowledge provides important reference for designers in mechanical design activities. However, current knowledge acquisition methods based on information retrieval have the problem of inefficiency and low precision, which mainly meet the requirement for knowledge coverage. To improve the efficiency of knowledge acquisition and ensure the availability of design knowledge, this paper proposes a knowledge push service method based on design intent and user interest. First, the design intent model, which is mainly the formal expression of the target function of conceptual design, is built. Second, the user interest model that consists of domain themes and operation logs is built, and an automatic updating method of user interest is proposed. Third, a matching method of design knowledge based on design intent, and a sorting algorithm of knowledge candidates based on user interest are proposed to realize personalized knowledge active push service. Finally, a prototype system called Personalized Knowledge Push System for Mechanical Conceptual Design (MCD-PKPS) is implemented. An illustrative case demonstrates that the proposed method can successfully improve the efficiency and availability of knowledge acquisition.


Author(s):  
Hyunmin Cheong ◽  
Wei Li ◽  
Francesco Iorio

This paper presents a novel application of gamification for collecting high-level design descriptions of objects. High-level design descriptions entail not only superficial characteristics of an object, but also function, behavior, and requirement information of the object. Such information is difficult to obtain with traditional data mining techniques. For acquisition of high-level design information, we investigated a multiplayer game, “Who is the Pretender?” in an offline context. Through a user study, we demonstrate that the game offers a more fun, enjoyable, and engaging experience for providing descriptions of objects than simply asking people to list them. We also show that the game elicits more high-level, problem-oriented requirement descriptions and less low-level, solution-oriented structure descriptions due to the unique game mechanics that encourage players to describe objects at an abstract level. Finally, we present how crowdsourcing can be used to generate game content that facilitates the gameplay. Our work contributes towards acquiring high-level design knowledge that is essential for developing knowledge-based CAD systems.


Author(s):  
Andrew Kusiak ◽  
Edward Szczerbicki

Abstract In this paper a methodology for the specification stage in conceptual design is presented. It allows for problem solving in an active interaction with the designer. An important part of the proposed methodology is the requiremental and functional tree representing the overall logic and structure of the design problem. The specification stage aims at providing requirements and transforming them into functions of the designed object. It occurs at the highest level of abstraction and it must provide enough information to begin the synthesis process where functions are transformed into design components that are further synthesized into the designed object. The proposed approach was motivated by the following problems: specification of requirements, specification of functions, incorporation of logic into functional and requiremental trees, representation of requirements-functions interaction, and optimization in the functional space. The methodology presented is illustrated with examples.


2017 ◽  
Author(s):  
Alexander Laun

With a renewed global focus on anti-submarine warfare (ASW), the United States Navy will increasingly rely on unmanned underwater vehicle (UUV) technology to serve as a cost-effective force multiplier. Modern UUV development necessitates a uniquely constrained, iterative approach to the traditional submarine design spiral. Considering a broad spectrum of customer-generated requirements, the UUV conceptual design process applies the best practices of naval architecture, marine engineering, ocean engineering, systems engineering, and submersible design. This paper provides an assessment of the traditional approach to the UUV design and development process. Specifically, this paper analyzes the design philosophy for modern UUVs, provides a design framework for the UUV conceptual design process, and details specific recommendations to encourage innovation in the subsea realm.


Sign in / Sign up

Export Citation Format

Share Document