Modeling of Tool Forces for Worn Tools: Flank Wear Effects

1996 ◽  
Vol 118 (3) ◽  
pp. 359-366 ◽  
Author(s):  
S. Elanayar ◽  
Y. C. Shin

A general procedure for the separation of ploughing forces from shearing forces on the shear plane is outlined. The first part of the paper deals with the experimental separation of these forces using the predictive machining theory developed by Oxley. The forces are decomposed by first separating the shear forces from the total forces and then employing an iterative procedure to calculate the normal forces on the shear plane. All analysis is conducted for three dimensional cutting. The second part of the paper develops a procedure to model the ploughing forces by accounting for the change in geometry with flank wear. The procedure uses the indentation models along with values of tool and workpiece material constants to determine the indentation force. Models for the indentation depth are developed from a few designed experiments and the predictions by the established models are then compared with experimental results obtained for different cutting conditions. The theoretical predictions of the ploughing forces agree closely with results of the experiments. Additional analysis using ceramic tools also show reasonably good agreement between predictions and experimental measurements.

2000 ◽  
Vol 122 (4) ◽  
pp. 372-379 ◽  
Author(s):  
Jing Liu ◽  
Liang Zhu ◽  
Lisa X. Xu

Thermal therapy of benign prostatic hyperplasia requires accurate prediction of the temperature distribution induced by the heating within the prostatic tissue. In this study, the Pennes bioheat transfer equation was used to model the transient heat transfer inside the canine prostate during transurethral microwave thermal therapy. Incorporating the specific absorption rate of microwave energy in tissue, a closed-form analytical solution was obtained. Good agreement was found between the theoretical predictions and in-vivo experimental results. Effects of blood perfusion and the cooling at the urethral wall on the temperature rise were investigated within the prostate during heating. The peak intraprostatic temperatures attained by application of 5, 10, or 15 W microwave power were predicted to be 38°C,41°C, and 44°C. Results from this study will help optimize the thermal dose that can be applied to target tissue during the therapy. [S0148-0731(00)01004-9]


1984 ◽  
Vol 106 (2) ◽  
pp. 143-149 ◽  
Author(s):  
D. Y. Yang ◽  
C. H. Han

An analytical method is proposed for estimating the steady-state punch pressure for three-dimensional backward extrusion (or piercing) of complicated internally shaped tubes from circular billets. A kinematically admissible velocity field is derived to formulate an upper-bound solution using velocity transformation and mapping function. The configuration of deforming boundary surfaces are determined by minimizing the extrusion power with respect to some chosen parameters. Experiments are carried out with commercially pure aluminum billets for internally shaped tubes at various reductions of area by using different sizes of shaped punches, such as square and regular hexagons. It is shown that the theoretical predictions for extrusion load are in good agreement with the experimental values.


1999 ◽  
Author(s):  
Richard Y. Chiou ◽  
Y. K. Kwon ◽  
Steven Y. Liang

Abstract An analysis of the RMS (Root Mean Square) characteristics of fluctuating force and acceleration signals for a cutting tool engaged in a turning operation in the presence of wear flat on the tool flank is presented in this research. The RMS of acceleration and force signals obtained from experiments in stable cutting is compared with theoretical machining models due to the tool wear effect. The RMS is a measure of the energy, at the tool tip-workpiece interface along the flank, to the random vibration of the cantilever portion of the tool holder. Increasing flank wear results in an increasing stability and decreasing RMS in the thrust direction, dependent upon flank wear-land width. The RMS force and acceleration signals in machining is calculated by frequency band RMS method at the first natural frequency of the cantilever portion of the tool holder in the frequency domain. By reference to experimental evidence, the theoretical predictions show generally good agreement with test results.


1964 ◽  
Vol 8 (05) ◽  
pp. 15-28
Author(s):  
J. P. Breslin ◽  
T. Kowalski

Vibratory pressures exerted on cylindrical and flat-plate boundaries due to a model propeller were measured at three advance coefficients. A number of "free-space" measurements also were made. All measurements were made by driving a propeller past fixed pressure gages. This method yielded curves of pressure changes which are entirely free from background noise. The magnitudes of the free-space pressures were found to be larger than one half the corresponding magnitudes measured by gages mounted flush in a large plate at equal clearances from the propeller. By postulating that the finite area of the gage diaphragm produces a partial image of the propeller (and hence a larger pressure than that in free space) an experimental procedure was devised for correcting for this finite-area effect yielding results in good agreement with theory. A theoretical treatment of this effect of finite gage size is given in Appendix 2. The decay of maximum amplitudes of vibrating pressures is shown by means of three-dimensional plots. The pressures were found to become vanishingly small within approximately one propeller diameter fore and aft of the center of the propeller. The comparison with theoretically calculated pressures and forces gives very close agreement for free-space pressures and reasonable agreement for forces on a cylindrical surface. The agreement of both pressures and forces with theory is excellent for operation near the design advance ratio. A strong plea is made for further experiments with ship models in an effort to develop design criteria for practical application.


1985 ◽  
Vol 107 (1) ◽  
pp. 31-35 ◽  
Author(s):  
N. Sitaram ◽  
A. L. Treaster

A simplified method of using four-hole probes to measure three-dimensional flow-fields is presented. This method is similar to an existing calibration and application procedure used for five-hole probes. The new method is demonstrated for two four-hole probes of different geometry. These four-hole probes and a five-hole probe are used to measure the turbulent boundary layer on a flat plate. The results from the three probes are in good agreement with theoretical predictions. The major discrepancies occur near the surface of the flat plate and are attributed to wall vicinity and velocity gradient effects.


1997 ◽  
Vol 57 (1) ◽  
pp. 195-201 ◽  
Author(s):  
D. O. MARTÍNEZ ◽  
S. CHEN ◽  
G. D. DOOLEN ◽  
R. H. KRAICHNAN ◽  
L.-P. WANG ◽  
...  

High-resolution, direct numerical simulations of three-dimensional incompressible Navier–Stokes equations are carried out to study the energy spectrum in the dissipation range. An energy spectrum of the form A(k/kd)α exp[−βk/kd] is confirmed. The possible values of the parameters α and β, as well as their dependence on Reynolds numbers and length scales, are investigated, showing good agreement with recent theoretical predictions. A ‘bottleneck’-type effect is reported at k/kd≈4, exhibiting a possible transition from near-dissipation to far-dissipation.


2016 ◽  
Vol 26 (05) ◽  
pp. 1650081 ◽  
Author(s):  
J. Kengne ◽  
Z. T. Njitacke ◽  
A. Nguomkam Negou ◽  
M. Fouodji Tsostop ◽  
H. B. Fotsin

In this paper, a novel autonomous RC chaotic jerk circuit is introduced and the corresponding dynamics is systematically investigated. The circuit consists of opamps, resistors, capacitors and a pair of semiconductor diodes connected in anti-parallel to synthesize the nonlinear component necessary for chaotic oscillations. The model is described by a continuous time three-dimensional autonomous system with hyperbolic sine nonlinearity, and may be viewed as a linear transformation of model MO15 previously introduced in [Sprott, 2010]. The structure of the equilibrium points and the discrete symmetries of the model equations are discussed. The bifurcation analysis indicates that chaos arises via the usual paths of period-doubling and symmetry restoring crisis. One of the key contributions of this work is the finding of a region in the parameter space in which the proposed (“elegant”) jerk circuit exhibits the unusual and striking feature of multiple attractors (i.e. coexistence of four disconnected periodic and chaotic attractors). Laboratory experimental results are in good agreement with the theoretical predictions.


1986 ◽  
Vol 108 (4) ◽  
pp. 280-287 ◽  
Author(s):  
D. William Wu

Chatter is a complex physical process in machining. One of the practical ways of modeling its transfer behavior is to derive the force functions theoretically from the substance of steady state cutting. This often requires a knowledge about the shear angle variation during the process. This paper presents a new method of modeling the angular oscillation in dynamic orthogonal cutting. The system governing equations were derived based on the work-hardening slip-line field theory in cutting mechanics by taking into account the changes of stress conditions on both the shear plane and the tool-chip interface. The result of a simulation study conducted for a wide range of cutting conditions has shown a very good agreement between the theoretical predictions and the existing experimental evidence.


1996 ◽  
Vol 07 (03) ◽  
pp. 401-408 ◽  
Author(s):  
D. P. LANDAU ◽  
ALEX BUNKER ◽  
KUN CHEN

Spin dynamics simulations have been used to study dynamic critical behavior of classical Heisenberg magnets. The temporal evolutions of the spin configurations were determined numerically from coupled equations of motion by a fourth-order predictor corrector method, with initial spin configurations generated by Monte-Carlo simulations. The neutron scattering function, S (q, ω), was calculated from the space and time displaced spin-spin correlation function and the dynamic critical exponent z was extracted using dynamic finite size scaling theory. For both ferromagnetic and antiferromagnetic models we find good agreement with theoretical predictions and experimental results.


1987 ◽  
Vol 109 (2) ◽  
pp. 155-160 ◽  
Author(s):  
D. Y. Yang ◽  
J. H. Kim

A simple kinematically admissible velocity field for three-dimensional deformation in upset forging of regular polygonal blocks is proposed which takes into account the sidewise spread as well as the bulging along thickness. From the proposed velocity field the upper-bound load and the deformed configuration are determined by minimizing the total power consumption with respect to three chosen parameters. Experiments are carried out with annealed commercially pure copper at room temperature for different thicknesses, billet shapes and lubrication conditions. The theoretical predictions both in the forging load and the deformed configuration are in good agreement with the experimental results. It is thus shown that the velocity field proposed in this work can be conveniently used for the prediction of the forging load and deformation in the upset forging of regular polygonal blocks.


Sign in / Sign up

Export Citation Format

Share Document