Dynamic Instabilities in the Sliding of Two Layered Elastic Half-Spaces

1998 ◽  
Vol 120 (2) ◽  
pp. 289-295 ◽  
Author(s):  
G. G. Adams

Two flat layered elastic half-spaces, of different material properties, are pressed together and slide against each other with a constant coefficient of friction. Although a nominally steady-state solution exists, an analysis of the dynamic motion yields complex eigenvalues with positive real parts, i.e., a flutter instability. These results demonstrate that self-excited (unstable) motion occurs for a wide range of material combinations. The physical mechanism responsible for this instability is that of slip-wave destabilization. The influence of the properties of the layers on the destabilization of sliding motion is investigated. These dynamic instabilities lead either to regions of stick-slip or to areas of loss-of-contact. Finally the dynamic stresses at the interfaces between the layers and the semi-infinite bodies are determined and compared to the nominally steady-state stresses. These dynamic stresses are expected to play an important role in delamination.

1995 ◽  
Vol 62 (4) ◽  
pp. 867-872 ◽  
Author(s):  
G. G. Adams

Two flat isotropic elastic half-spaces, of different material properties, are pressed together and slide against each other with a constant coefficient of friction. Although a nominally steady-state solution exists, an analysis of the dynamic problem demonstrates that the steady solution can be dynamically unstable. Eigenvalues with positive real parts give rise to self-excited motion which occurs for a wide range of material pairs, coefficients of friction, and sliding velocities (including very low speeds). These self-excited oscillations are generally confined to the region near the interface and can lead either to regions of loss of contact or to areas of stick slip. The mechanism responsible for the instability is essentially one of destabilization of interfacial (slip) waves. It is expected that these vibrations might play an important role in the behavior of sliding members with dry friction.


1996 ◽  
Vol 118 (4) ◽  
pp. 819-823 ◽  
Author(s):  
G. G. Adams

The sliding of two surfaces with respect to each other involves many interacting phenomena. In this paper a simple model is presented for the dynamic interaction of two sliding surfaces. This model consists of a beam on elastic foundation acted upon by a series of moving linear springs, where the springs represent the asperities on one of the surfaces. The coefficient of friction is constant. Although a nominally steady-state solution exists, an analysis of the dynamic problem indicates that the steady solution is dynamically unstable for any finite speed. Eigenvalues with positive real parts give rise to self-excited motion which continues to increase with time. These self-excited oscillations can lead either to partial loss-of-contact or to stick-slip. The mechanism responsible for the instability is a result of the interaction of certain complex modes of vibration (which result from the moving springs) with the friction force of the moving springs. It is expected that these vibrations play a role in the behavior of sliding members with dry friction.


2019 ◽  
Author(s):  
Joeri van Engelen ◽  
Jarno Verkaik ◽  
Jude King ◽  
Eman R. Nofal ◽  
Marc F. P. Bierkens ◽  
...  

Abstract. The Nile Delta is an important agricultural area with a fast-growing population. Though traditionally irrigated with surface water, the delta increasingly relies on groundwater. However, saline groundwater extends far land inward, rendering groundwater close to the coastal zone useless for consumption or agriculture. To aid groundwater management decisions, hydrogeologists reconstructed this saline and brackish groundwater zone using variable-density groundwater models with very large dispersivities. However, this approach cannot explain the observed freshening of this zone as observed by hydrogeochemists, who hypothesize that the coastal saline zone is the effect of the Holocene transgression. Here, we investigated physical plausibility of this hypothesis by conducting a palaeo-reconstruction of groundwater salinity for the last 32 ka with a complex 3D variable-density groundwater flow model, using state-of-the-art model code that allows for parallel computation. Several scenarios with different lithologies and hypersaline groundwater provenances were simulated, of which five were selected that showed the best match with the observations. Amongst these selections, total fresh water volumes varied strongly, ranging from 1526 to 2659 km3, mainly due to uncertainties in the lithology offshore and at larger depths. This range is smaller (1511–1989 km3) when we consider the volumes of onshore fresh groundwater within 300 m depth. Regardless of the variance, in all cases the total volume of hypersaline groundwater exceeded that of sea water. We also show that during the last 32 ka, the total fresh groundwater volumes significantly declined, with a factor ranging from 1.9 to 5.4, due to the rising sea-level. Compared to a steady-state solution with present-day boundary conditions, the palaeo-reconstruction improved our validation for the saline zone (5 g/L–35 g/L TDS). Also, under highly permeable conditions the marine transgression simulated with the palaeo-reconstruction led to a steeper fresh-salt interface compared to its steady-state equivalent, while low permeable clay layers allowed for the preservation of volumes of fresh groundwater. This shows that long-term transient simulations are needed when estimating present-day fresh-salt groundwater distribution in large deltas. The insights of this study are also applicable to other major deltaic areas, given the wide-range of lithological model scenarios used in this study and since many deltas also experienced a Holocene marine transgression.


2020 ◽  
Vol 493 (2) ◽  
pp. 2834-2840
Author(s):  
Eric Keto

ABSTRACT Bondi and Parker derived a steady-state solution for Bernoulli’s equation in spherical symmetry around a point mass for two cases, respectively, an inward accretion flow and an outward wind. Left unanswered were the stability of the steady-state solution, the solution itself of time-dependent flows, whether the time-dependent flows would evolve to the steady state, and under what conditions a transonic flow would develop. In a Hamiltonian description, we find that the steady-state solution is equivalent to the Lagrangian implying that time-dependent flows evolve to the steady state. We find that the second variation is definite in sign for isothermal and adiabatic flows, implying at least linear stability. We solve the partial differential equation for the time-dependent flow as an initial-value problem and find that a transonic flow develops under a wide range of realistic initial conditions. We present some examples of time-dependent solutions.


2012 ◽  
Vol 271-272 ◽  
pp. 1356-1361 ◽  
Author(s):  
Biao Chu ◽  
Yi Jin ◽  
Chang An Zhu

In various fields of positioning engineering, it is important to clarify the sliding motion, especially the stick slip phenomenon, for a wide range of scales positioning stage which works at a relative low sliding speed. In this paper, the sliding system of stick-slip motion is modeled based on a mass-spring-dampness system which includes four parameters. Meanwhile, a numerical simulation based on the Pro/ENGINEER software was conducted in order to study the relationship between stick slip behavior and its impact factors, such as the mass, stiffness, friction coefficient and damping coefficient. Moreover, experiments results are also provided to show the rationality of the theoretical analysis and the computer simulation.


2014 ◽  
Vol 592-594 ◽  
pp. 1466-1471
Author(s):  
V. Jagan ◽  
K. Mohan Babu ◽  
A. Satheesh ◽  
D. Santhosh Kumar

In this paper, a two phase flow distribution in a horizontal pipe is numerically analyzed by solving one dimensional steady state momentum equation for predicting the pressure drop (∆P), quality of steam at outlet of the pipe (X), void fraction (α). The heat absorbed by the pipe (Q) and the mass flow rate (W) of water are varied over a wide range to investigate the above parameters. The locations of the two phase mixture are discussed. Pressure drop along the pipe is inconsistent for different flow rate so, the stable and unstable steady state solution is also carried out using Linear Stability analysis. The present numerical results are compared with the reported data from the literature and found that they are in good agreement. This study is used to calculate the pressure, temperature, hold up and quality within the horizontal pipe.


2019 ◽  
Vol 26 (6) ◽  
pp. 435-448
Author(s):  
Priyanka Biswas ◽  
Dillip K. Sahu ◽  
Kalyanasis Sahu ◽  
Rajat Banerjee

Background: Aminoacyl-tRNA synthetases play an important role in catalyzing the first step in protein synthesis by attaching the appropriate amino acid to its cognate tRNA which then transported to the growing polypeptide chain. Asparaginyl-tRNA Synthetase (AsnRS) from Brugia malayi, Leishmania major, Thermus thermophilus, Trypanosoma brucei have been shown to play an important role in survival and pathogenesis. Entamoeba histolytica (Ehis) is an anaerobic eukaryotic pathogen that infects the large intestines of humans. It is a major cause of dysentery and has the potential to cause life-threatening abscesses in the liver and other organs making it the second leading cause of parasitic death after malaria. Ehis-AsnRS has not been studied in detail, except the crystal structure determined at 3 Å resolution showing that it is primarily α-helical and dimeric. It is a homodimer, with each 52 kDa monomer consisting of 451 amino acids. It has a relatively short N-terminal as compared to its human and yeast counterparts. Objective: Our study focusses to understand certain structural characteristics of Ehis-AsnRS using biophysical tools to decipher the thermodynamics of unfolding and its binding properties. Methods: Ehis-AsnRS was cloned and expressed in E. coli BL21DE3 cells. Protein purification was performed using Ni-NTA affinity chromatography, following which the protein was used for biophysical studies. Various techniques such as steady-state fluorescence, quenching, circular dichroism, differential scanning fluorimetry, isothermal calorimetry and fluorescence lifetime studies were employed for the conformational characterization of Ehis-AsnRS. Protein concentration for far-UV and near-UV circular dichroism experiments was 8 µM and 20 µM respectively, while 4 µM protein was used for the rest of the experiments. Results: The present study revealed that Ehis-AsnRS undergoes unfolding when subjected to increasing concentration of GdnHCl and the process is reversible. With increasing temperature, it retains its structural compactness up to 45ºC before it unfolds. Steady-state fluorescence, circular dichroism and hydrophobic dye binding experiments cumulatively suggest that Ehis-AsnRS undergoes a two-state transition during unfolding. Shifting of the transition mid-point with increasing protein concentration further illustrate that dissociation and unfolding processes are coupled indicating the absence of any detectable folded monomer. Conclusion: This article indicates that GdnHCl induced denaturation of Ehis-AsnRS is a two – state process and does not involve any intermediate; unfolding occurs directly from native dimer to unfolded monomer. The solvent exposure of the tryptophan residues is biphasic, indicating selective quenching. Ehis-AsnRS also exhibits a structural as well as functional stability over a wide range of pH.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3854
Author(s):  
Salvatore Musumeci ◽  
Luigi Solimene ◽  
Carlo Stefano Ragusa

In this paper, we propose a method for the identification of the differential inductance of saturable ferrite inductors adopted in DC–DC converters, considering the influence of the operating temperature. The inductor temperature rise is caused mainly by its losses, neglecting the heating contribution by the other components forming the converter layout. When the ohmic losses caused by the average current represent the principal portion of the inductor power losses, the steady-state temperature of the component can be related to the average current value. Under this assumption, usual for saturable inductors in DC–DC converters, the presented experimental setup and characterization method allow identifying a DC thermal steady-state differential inductance profile of a ferrite inductor. The curve is obtained from experimental measurements of the inductor voltage and current waveforms, at different average current values, that lead the component to operate from the linear region of the magnetization curve up to the saturation. The obtained inductance profile can be adopted to simulate the current waveform of a saturable inductor in a DC–DC converter, providing accurate results under a wide range of switching frequency, input voltage, duty cycle, and output current values.


Author(s):  
Yan Chen ◽  
Ward Whitt

In order to understand queueing performance given only partial information about the model, we propose determining intervals of likely values of performance measures given that limited information. We illustrate this approach for the mean steady-state waiting time in the $GI/GI/K$ queue. We start by specifying the first two moments of the interarrival-time and service-time distributions, and then consider additional information about these underlying distributions, in particular, a third moment and a Laplace transform value. As a theoretical basis, we apply extremal models yielding tight upper and lower bounds on the asymptotic decay rate of the steady-state waiting-time tail probability. We illustrate by constructing the theoretically justified intervals of values for the decay rate and the associated heuristically determined interval of values for the mean waiting times. Without extra information, the extremal models involve two-point distributions, which yield a wide range for the mean. Adding constraints on the third moment and a transform value produces three-point extremal distributions, which significantly reduce the range, producing practical levels of accuracy.


Sign in / Sign up

Export Citation Format

Share Document