Steady Inspiratory Flow in a Model Symmetric Bifurcation

1994 ◽  
Vol 116 (4) ◽  
pp. 488-496 ◽  
Author(s):  
Yao Zhao ◽  
Baruch B. Lieber

Flow in a bifurcating tube system typifying a major bronchial bifurcation is studied experimentally with a two color, two velocity component laser Doppler anemometer. The flow loop is composed of a pumping station, flow stratifiers and a constant head pressure tank; it can accommodate steady, pulsatile or oscillatory flow. The test section is a symmetric bifurcation of constant cross sectional area and has a branching angle of 70 deg. The test section is a cast of clear silicon rubber in a plexiglass mold that was milled on a numerically controlled milling machine. The flow division ratio from the parent to daughter branches is about unity. Steady flow results that model the inspiratory phase at Reynolds numbers of 518, 1036 and 2089, corresponding to Dean numbers of 98, 196 and 395, show that in the bifurcation plane velocity profiles in the daughter branches are skewed toward the inner wall. In the transverse plane, “m” shaped velocity profiles are found with low velocity at the center. Secondary flow patterns, which are responsible for such phenomena, are first observed at the axial position where the flow begins to turn. Flow separation was not observed at any point in the bifurcation.

1994 ◽  
Vol 116 (3) ◽  
pp. 318-323 ◽  
Author(s):  
Yao Zhao ◽  
Baruch B. Lieber

A model symmetric bifurcation was employed to simulate steady expiratory flow in the upper part of the human central airways. A two color, two component laser Doppler anemometer was used to measure both the axial flow and the secondary flow at three different Reynolds numbers of 518, 1036, and 2089, corresponding to Dean numbers of 98, 196, and 395. The test section is a symmetric bifurcation of constant cross-sectional area with a branching angle of 70 degrees. The flow rate into the two daughter branches was about the same. Results show that in the junction plane, velocity profiles in the daughter branches are skewed towards the inner walls. In the parent tube, just downstream of the flow divider, the velocity profile is biconcave with a dip at the center but this is rapidly transformed into a velocity peak. In a plane transverse to the bifurcation plane, parabolic velocity distribution was conserved through the daughter branches. In the parent tube, the transverse profiles became flat downstream of the flow divider and developed a defect at the center further downsteam towards the end of the parent tube part of the bifurcation. The velocity defect was confined to a small region in the vicinity of the centerline. Helical motion typified by symmetric vortices was observed in the daughter branches. In the parent tube, a set of four vortices induced by the turning of the flow was observed.


2012 ◽  
Vol 27 (4) ◽  
pp. 783-789 ◽  
Author(s):  
Haiya Peng ◽  
Sheldon I. Green

Abstract The three-dimensional velocity field in the single phase approach flow to a multiple layer woven forming fabric was measured using PIV. The measurements were conducted on a scaled-up model of a forming fabric in a water/glycerin flow loop. Each strand on the paper side of the model forming fabric had a filament diameter ( d) of 1 5 mm, and the flow loop test section was 3 1 0 mm squared, permitting the measurement of detailed velocity distributions over multiple strands of the fabric. The flow speed in the loop test section was varied to achieve screen Reynolds numbers between 12 and 6 5 . PIV measurements showed that when the distance t o the paper side of the fabric changes from 0.25d to 1 . 5d, the normalized ZD, CMD and MD velocity deviation decreases from 1 9 .7% to 4 .2%, 1 5 . 3 % to 1 .9% and 1 4 . 5 % t o 2 . 3 %, respectively; the ratio between maximum and minimum ZD velocity decreases from 3 .3 to 1 .2 . These findings indicate that the flow non-uniformity caused by the fabric weave is confined to a short distance above the fabric. CFD simulations of the same flow were consistent with the PIV measurements.


1971 ◽  
Vol 46 (2) ◽  
pp. 365-383 ◽  
Author(s):  
T. J. Pedley ◽  
R. C. Schroter ◽  
M. F. Sudlow

The airways of the lung form a rapidly diverging system of branched tubes, and any discussion of their mechanics requires an understanding of the effects of the bifurcations on the flow downstream of them. Experiments have been carried out in models containing up to two generations of symmetrical junctions with fixed branching angle and diameter ratio, typical of the human lung. Flow visualization studies and velocity measurements in the daughter tubes of the first junction verified that secondary motions are set up, with peak axial velocities just outside the boundary layer on the inner wall of the junction, and that they decay slowly downstream. Axial velocity profiles were measured downstream of all junctions at a range of Reynolds numbers for which the flow was laminar.In each case these velocity profiles were used to estimate the viscous dissipation in the daughter tubes, so that the mean pressure drop associated with each junction and its daughter tubes could be inferred. The dependence of the dissipation on the dimensional variables is expected to be the same as in the early part of a simple entrance region, because most of the dissipation will occur in the boundary layers. This is supported by the experimental results, and the ratio Z of the dissipation in a tube downstream of a bifurcation to the dissipation which would exist in the same tube if Poiseuille flow were present is given by \[ Z = (C/4\surd{2})(Re\,d/L)^{\frac{1}{2}}, \] where L and d are the length and diameter of the tube, Re is the Reynolds number in it, and the constant C (equal to one for simple entry flow) is equal to 1·85 (the average value from our experiments). In general, C is expected to depend on the branching angles and diameter ratios of the junctions used. No experiments were performed in which the flow was turbulent, but it is argued that turbulence will not greatly affect the above results at Reynolds numbers less than and of the order of 10000. Many more experiments are required to consolidate this approach, but predictions based upon it agree well with the limited number of physiological experiments available.


Author(s):  
Robert J. Boyle ◽  
Louis M. Russell

Local Stanton numbers were experimentally determined for the endwall surface of a turbine vane passage. A six vane linear cascade having vanes with an axial chord of 13.81 cm was used. Results were obtained for Reynolds numbers based on inlet velocity and axial chord between 73,000 and 495,000. The test section was connected to a low pressure exhaust system. Ambient air was drawn into the test section, inlet velocity was controlled up to a maximum of 59.4 m/sec. The effect of the inlet boundary layer thickness on the endwall heat transfer was determined for a range of test section flow rates. The liquid crystal measurement technique was used to measure heat transfer. Endwall heat transfer was determined by applying electrical power to a foil heater attached to the cascade endwall. The temperature at which the liquid crystal exhibited a specific color was known from a calibration test. Lines showing this specific color were isotherms, and because of uniform heat generation they were also lines of nearly constant heat transfer. Endwall static pressures were measured, along with surveys of total pressure and flow angles at the inlet and exit of the cascade.


1995 ◽  
Vol 268 (1) ◽  
pp. H25-H32 ◽  
Author(s):  
C. Alonso ◽  
A. R. Pries ◽  
O. Kiesslich ◽  
D. Lerche ◽  
P. Gaehtgens

Velocity profiles of human blood flowing through vertical and horizontal glass tubes (25–100 microns ID) were measured as a function of time following a sudden reduction of wall shear stress (tau w) from a high value to values ranging from 2 to 100 mPa. Cell velocities at various radial positions were determined off-line from video recordings by digital image analysis. In vertical tubes, symmetric velocity profiles were obtained that developed increasing bluntness with time, particularly at lower tau w and in smaller tubes. In horizontal tubes, velocity profiles developed strong asymmetry as a function of time. Red blood cell (RBC) sedimentation was associated with uniform low flow velocities in the concentrating cell sediment, whereas faster flow and almost parabolic profiles were observed in the supernatant plasma region. Calculations of effective blood viscosity showed a decrease with time at low tau w in vertical tubes but an increase in horizontal tubes. The differences between profile shape and effective viscosity in vertical and horizontal tubes disappeared at tau w > 50 mPa. These findings are related to the cross-sectional distribution of RBC, which depends on RBC aggregation and sedimentation.


Author(s):  
F. E. Ames ◽  
L. A. Dvorak

The objective of this research has been to experimentally investigate the fluid dynamics of pin fin arrays in order to clarify the physics of heat transfer enhancement and uncover problems in conventional turbulence models. The fluid dynamics of a staggered pin fin array have been studied using hot wire anemometry with both single and x-wire probes at array Reynolds numbers of 3000; 10,000; and 30,000. Velocity distributions off the endwall and pin surface have been acquired and analyzed to investigate turbulent transport in pin fin arrays. Well resolved 3-D calculations have been performed using a commercial code with conventional two-equation turbulence models. Predictive comparisons have been made with fluid dynamic data. In early rows where turbulence is low, the strength of shedding increases dramatically with increasing in Reynolds numbers. The laminar velocity profiles off the surface of pins show evidence of unsteady separation in early rows. In row three and beyond laminar boundary layers off pins are quite similar. Velocity profiles off endwalls are strongly affected by the proximity of pins and turbulent transport. At the low Reynolds numbers, the turbulent transport and acceleration keep boundary layers thin. Endwall boundary layers at higher Reynolds numbers exhibit very high levels of skin friction enhancement. Well resolved 3-D steady calculations were made with several two-equation turbulence models and compared with experimental fluid mechanic and heat transfer data. The quality of the predictive comparison was substantially affected by the turbulence model and near wall methodology.


2014 ◽  
Vol 54 (6) ◽  
pp. 430-438 ◽  
Author(s):  
Radek Šulc ◽  
Vít Pešava ◽  
Pavel Ditl

<p>The hydrodynamics and flow field were measured in an agitated vessel using 2-D Time Resolved Particle Image Velocimetry (2-D TR PIV). The experiments were carried out in a fully baffled cylindrical flat bottom vessel 300 mm in inner diameter. The tank was agitated by a Rushton turbine 100 mm in diameter. The velocity fields were measured for three impeller rotation speeds 300 rpm, 450 rpm and 600 rpm and the corresponding Reynolds numbers in the range 50 000 &lt; Re &lt; 100 000, which means that the fully-developed turbulent flow was reached. In accordance with the theory of mixing, the dimensionless mean and fluctuation velocities in the measured directions were found to be constant and independent of the impeller rotational speed. The velocity profiles were averaged, and were expressed by Chebyshev polynomials of the 1<sup>st</sup> order. Although the experimentally investigated area was relatively far from the impeller, and it was located in upward flow to the impeller, no state of local isotropy was found. The ratio of the axial rms fluctuation velocity to the radial component was found to be in the range from 0.523 to 0.768. The axial turbulence intensity was found to be in the range from 0.293 to 0.667, which corresponds to a high turbulence intensity.</p>


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Sneha Sayindla ◽  
Bjørnar Lund ◽  
Benjamin Werner ◽  
...  

One important requirement for a drilling fluid is the ability to transport the cuttings out of the borehole. Improved hole cleaning is a key to solve several challenges in the drilling industry and will allow both longer wells and improved quality of well construction. It has been observed, however, that drilling fluids with similar properties according to the API standard can have significantly different behavior with respect to hole cleaning performance. The reasons for this are not fully understood. This paper presents results from flow loop laboratory tests without and with injected cuttings size particles using a base oil and a commercial oil based drilling fluid. The results demonstrate the importance of the rheological properties of the fluids for the hole cleaning performance. A thorough investigation of the viscoelastic properties of the fluids was performed with a Fann viscometer and a Paar-Physica rheometer, and was used to interpret the results from the flow loop experiments. Improved understanding of the fluid properties relevant to hole cleaning performance will help develop better models of wellbore hydraulics used in planning of well operations. Eventually this may lead to higher ROP with water based drilling fluids as obtained with oil based drilling fluids. This may ease cuttings handling in many operations and thereby significantly reduce the drilling cost using (normally) more environmentally friendly fluids. The experiments have been conducted as part of an industry-sponsored research project where understanding the hole cleaning performance of various oil and water based drilling fluids is the aim. The experiments have been performed under realistic conditions. The flow loop includes a 10 meter long test section with 2″ OD freely rotating drillstring inside a 4″ ID wellbore made of concrete. Sand particles were injected while circulating the drilling fluid through the test section in horizontal position.


Author(s):  
Jan David Ytrehus ◽  
Ali Taghipour ◽  
Knud Richard Gyland ◽  
Bjørnar Lund ◽  
Sneha Sayindla ◽  
...  

A laboratory scale flow loop for drilling applications has been used for evaluating the effect of lubricants on skin friction during drilling and completion with oil based or low solids oil based fluids. The flow loop included a 10 meter long test section with 2″ OD free whirling rotating drill string inside a 4″ ID wellbore made of concrete elements positioned inside a steel tubing. A transparent part of the housing was located in the middle of the test section, separating two steel sections of equal length. The entire test section was mounted on a steel frame which can be tilted from horizontal to 30° inclination. The drilling fluids and additives in these experiments were similar to those used in specific fields in NCS. Friction coefficient was calculated from the measured torque for different flow velocities and rotational velocities and the force perpendicular to the surface caused by the buoyed weight of the string. The main objective of the article has been to quantify the effect on mechanical friction when applying different concentrations of an oil-based lubricant into an ordinary oil based drilling fluid and a low solids oil based drilling fluid used in a North Sea drilling and completion operation.


Sign in / Sign up

Export Citation Format

Share Document