scholarly journals A Neural Network Truth Maintenance System

1991 ◽  
Vol 113 (1) ◽  
pp. 187-191
Author(s):  
W. P. Mounfield ◽  
S. Guddanti

A novel approach using neural networks to solve expert system problems is presented in this paper. Facts are represented by neurons and their interconnections form the knowledge base. The Truth Maintenance System neural network arrives at a valid solution provided the solution exists. A valid solution is a consistent set of facts. If the solution does not exist the network limit cycles. An experimental setup was built and tested using conventional integrated circuits. The hardware design is suitable for VLSI implementation for large, real-time problems.

2003 ◽  
Vol 9 (4) ◽  
pp. 255-262 ◽  
Author(s):  
M. Kalkat ◽  
Ş. Yıldırım ◽  
I. Uzmay

Adirect-coupled rotor system was designed to analyze the dynamic behavior of rotating systems in regard to vibration parameters. The vibration parameters are amplitude, velocity, and acceleration in the vertical direction. The system consisted of a machine analyzer, shaft, disk, master-trend software, and power unit. Four different points were detected and measured by the experimental setup. The vibration parameters were found and saved from master-trend software. These parameters were employed as the desired parameters of the network. A neural network is designed for analyzing a system's vibration parameters. The results showed that the network could be used as an analyzer of such systems in experimental applications.


2006 ◽  
Vol 71 (11) ◽  
pp. 1207-1218
Author(s):  
Dondeti Satyanarayana ◽  
Kamarajan Kannan ◽  
Rajappan Manavalan

Simultaneous estimation of all drug components in a multicomponent analgesic dosage form with artificial neural networks calibration models using UV spectrophotometry is reported as a simple alternative to using separate models for each component. A novel approach for calibration using a compound spectral dataset derived from three spectra of each component is described. The spectra of mefenamic acid and paracetamol were recorded as several concentrations within their linear range and used to compute a calibration mixture between the wavelengths 220 to 340 nm. Neural networks trained by a Levenberg-Marquardt algorithm were used for building and optimizing the calibration models using MATALAB? Neural Network Toolbox and were compared with the principal component regression model. The calibration models were thoroughly evaluated at several concentration levels using 104 spectra obtained for 52 synthetic binary mixtures prepared using orthogonal designs. The optimized model showed sufficient robustness even when the calibration sets were constructed from a different set of pure spectra of the components. The simultaneous prediction of both components by a single neural network with the suggested calibration approach was successful. The model could accurately estimate the drugs, with satisfactory precision and accuracy, in tablet dosage with no interference from excipients as indicated by the results of a recovery study.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 363
Author(s):  
Qi Zhang ◽  
Zhuangzhuang Xing ◽  
Duan Huang

We demonstrate a pruned high-speed and energy-efficient optical backpropagation (BP) neural network. The micro-ring resonator (MRR) banks, as the core of the weight matrix operation, are used for large-scale weighted summation. We find that tuning a pruned MRR weight banks model gives an equivalent performance in training with the model of random initialization. Results show that the overall accuracy of the optical neural network on the MNIST dataset is 93.49% after pruning six-layer MRR weight banks on the condition of low insertion loss. This work is scalable to much more complex networks, such as convolutional neural networks and recurrent neural networks, and provides a potential guide for truly large-scale optical neural networks.


2012 ◽  
Vol 235 ◽  
pp. 34-38
Author(s):  
Jie Zhu ◽  
Wei Dong ◽  
Jing Zhang ◽  
Xu Ning Liu

In order to improve the efficiency of prediction and diagnose of crop diseases and pests, and solve the problems during the course of crop production and management, then an neural networks with weight adjustment of prediction model is proposed. The crop disasters are regarded as example, after the symptoms of disasters and features are classified, abstracted and coded, the adjustment of weight, optimization of network structure and reasonable adjustment of parameters of BP neural network are discussed, then a model is constructed to forecast the disasters of crop, the weight is used as knowledge to predict disasters of crop through studying training samples. Results have shown that the optimization expert system of crop disasters based on neural network has enhanced the ability of decision making of expert system, then greatly improved the accuracy and reliability of crop diagnosis.


2021 ◽  
Vol 32 (4) ◽  
pp. 65-82
Author(s):  
Shengfei Lyu ◽  
Jiaqi Liu

Recurrent neural network (RNN) and convolutional neural network (CNN) are two prevailing architectures used in text classification. Traditional approaches combine the strengths of these two networks by straightly streamlining them or linking features extracted from them. In this article, a novel approach is proposed to maintain the strengths of RNN and CNN to a great extent. In the proposed approach, a bi-directional RNN encodes each word into forward and backward hidden states. Then, a neural tensor layer is used to fuse bi-directional hidden states to get word representations. Meanwhile, a convolutional neural network is utilized to learn the importance of each word for text classification. Empirical experiments are conducted on several datasets for text classification. The superior performance of the proposed approach confirms its effectiveness.


1996 ◽  
Author(s):  
Bernard Engel ◽  
Yael Edan ◽  
James Simon ◽  
Hanoch Pasternak ◽  
Shimon Edelman

The objectives of this project were to develop procedures and models, based on neural networks, for quality sorting of agricultural produce. Two research teams, one in Purdue University and the other in Israel, coordinated their research efforts on different aspects of each objective utilizing both melons and tomatoes as case studies. At Purdue: An expert system was developed to measure variances in human grading. Data were acquired from eight sensors: vision, two firmness sensors (destructive and nondestructive), chlorophyll from fluorescence, color sensor, electronic sniffer for odor detection, refractometer and a scale (mass). Data were analyzed and provided input for five classification models. Chlorophyll from fluorescence was found to give the best estimation for ripeness stage while the combination of machine vision and firmness from impact performed best for quality sorting. A new algorithm was developed to estimate and minimize training size for supervised classification. A new criteria was established to choose a training set such that a recurrent auto-associative memory neural network is stabilized. Moreover, this method provides for rapid and accurate updating of the classifier over growing seasons, production environments and cultivars. Different classification approaches (parametric and non-parametric) for grading were examined. Statistical methods were found to be as accurate as neural networks in grading. Classification models by voting did not enhance the classification significantly. A hybrid model that incorporated heuristic rules and either a numerical classifier or neural network was found to be superior in classification accuracy with half the required processing of solely the numerical classifier or neural network. In Israel: A multi-sensing approach utilizing non-destructive sensors was developed. Shape, color, stem identification, surface defects and bruises were measured using a color image processing system. Flavor parameters (sugar, acidity, volatiles) and ripeness were measured using a near-infrared system and an electronic sniffer. Mechanical properties were measured using three sensors: drop impact, resonance frequency and cyclic deformation. Classification algorithms for quality sorting of fruit based on multi-sensory data were developed and implemented. The algorithms included a dynamic artificial neural network, a back propagation neural network and multiple linear regression. Results indicated that classification based on multiple sensors may be applied in real-time sorting and can improve overall classification. Advanced image processing algorithms were developed for shape determination, bruise and stem identification and general color and color homogeneity. An unsupervised method was developed to extract necessary vision features. The primary advantage of the algorithms developed is their ability to learn to determine the visual quality of almost any fruit or vegetable with no need for specific modification and no a-priori knowledge. Moreover, since there is no assumption as to the type of blemish to be characterized, the algorithm is capable of distinguishing between stems and bruises. This enables sorting of fruit without knowing the fruits' orientation. A new algorithm for on-line clustering of data was developed. The algorithm's adaptability is designed to overcome some of the difficulties encountered when incrementally clustering sparse data and preserves information even with memory constraints. Large quantities of data (many images) of high dimensionality (due to multiple sensors) and new information arriving incrementally (a function of the temporal dynamics of any natural process) can now be processed. Furhermore, since the learning is done on-line, it can be implemented in real-time. The methodology developed was tested to determine external quality of tomatoes based on visual information. An improved model for color sorting which is stable and does not require recalibration for each season was developed for color determination. Excellent classification results were obtained for both color and firmness classification. Results indicted that maturity classification can be obtained using a drop-impact and a vision sensor in order to predict the storability and marketing of harvested fruits. In conclusion: We have been able to define quantitatively the critical parameters in the quality sorting and grading of both fresh market cantaloupes and tomatoes. We have been able to accomplish this using nondestructive measurements and in a manner consistent with expert human grading and in accordance with market acceptance. This research constructed and used large databases of both commodities, for comparative evaluation and optimization of expert system, statistical and/or neural network models. The models developed in this research were successfully tested, and should be applicable to a wide range of other fruits and vegetables. These findings are valuable for the development of on-line grading and sorting of agricultural produce through the incorporation of multiple measurement inputs that rapidly define quality in an automated manner, and in a manner consistent with the human graders and inspectors.


Information ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 426
Author(s):  
Gabriel D. Cantareira ◽  
Elham Etemad ◽  
Fernando V. Paulovich

Deep Neural Networks are known for impressive results in a wide range of applications, being responsible for many advances in technology over the past few years. However, debugging and understanding neural networks models’ inner workings is a complex task, as there are several parameters and variables involved in every decision. Multidimensional projection techniques have been successfully adopted to display neural network hidden layer outputs in an explainable manner, but comparing different outputs often means overlapping projections or observing them side-by-side, presenting hurdles for users in properly conveying data flow. In this paper, we introduce a novel approach for comparing projections obtained from multiple stages in a neural network model and visualizing differences in data perception. Changes among projections are transformed into trajectories that, in turn, generate vector fields used to represent the general flow of information. This representation can then be used to create layouts that highlight new information about abstract structures identified by neural networks.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Márcio Freire Cruz ◽  
Naoaki Ono ◽  
Ming Huang ◽  
Md. Altaf-Ul-Amin ◽  
Shigehiko Kanaya ◽  
...  

Abstract Background Sepsis is a severe illness that affects millions of people worldwide, and its early detection is critical for effective treatment outcomes. In recent years, researchers have used models to classify positive patients or identify the probability for sepsis using vital signs and other time-series variables as input. Methods In our study, we analyzed patients’ conditions by their kinematics position, velocity, and acceleration, in a six-dimensional space defined by six vital signs. The patient is affected by the disease after a period if the position gets “near” to a calculated sepsis position in space. We imputed these kinematics features as explanatory variables of long short-term memory (LSTM), convolutional neural network (CNN) and linear neural network (LNN) and compared the prediction accuracies with only the vital signs as input. The dataset used contained information of approximately 4800 patients, each with 48 hourly registers. Results We demonstrated that the kinematics features models had an improved performance compared with vital signs models. The kinematics features model of LSTM achieved the best accuracy, 0.803, which was nine points higher than the vital signs model. Although with lesser accuracies, the kinematics features models of the CNN and LNN showed better performances than vital signs models. Conclusion Applying our novel approach for early detection of sepsis using neural networks will prove to be an invaluable, more accurate method than considering only simple vital signs as input variables. We expect that other researchers with similar objectives can use the model presented in this innovative approach to improve their results.


Author(s):  
Pratheek I ◽  
Joy Paulose

<p>Generating sequences of characters using a Recurrent Neural Network (RNN) is a tried and tested method for creating unique and context aware words, and is fundamental in Natural Language Processing tasks. These type of Neural Networks can also be used a question-answering system. The main drawback of most of these systems is that they work from a factoid database of information, and when queried about new and current information, the responses are usually bleak. In this paper, the author proposes a novel approach to finding answer keywords from a given body of news text or headline, based on the query that was asked, where the query would be of the nature of current affairs or recent news, with the use of Gated Recurrent Unit (GRU) variant of RNNs. Thus, this ensures that the answers provided are relevant to the content of query that was put forth.</p>


Sign in / Sign up

Export Citation Format

Share Document