scholarly journals Parametric Instability of an Axially Moving Belt Subjected to Multifrequency Excitations: Experiments and Analytical Validation

2008 ◽  
Vol 75 (4) ◽  
Author(s):  
Guilhem Michon ◽  
Lionel Manin ◽  
Didier Remond ◽  
Regis Dufour ◽  
Robert G. Parker

This paper experimentally investigates the parametric instability of an industrial axially moving belt subjected to multifrequency excitation. Based on the equations of motion, an analytical perturbation analysis is achieved to identify instabilities. The second part deals with an experimental setup that subjects a moving belt to multifrequency parametric excitation. A data acquisition technique using optical encoders and based on the angular sampling method is used with success for the first time on a nonsynchronous belt transmission. Transmission error between pulleys, pulley/belt slip, and tension fluctuation are deduced from pulley rotation angle measurements. Experimental results validate the theoretical analysis. Of particular note is that the instability regions are shifted to lower frequencies than the classical ones due to the multifrequency excitation. This experiment also demonstrates nonuniform belt characteristics (longitudinal stiffness and friction coefficient) along the belt length that are unexpected sources of excitation. These variations are shown to be sources of parametric instability.

Author(s):  
Guilhem Michon ◽  
Lionel Manin ◽  
Didier Remond ◽  
Regis Dufour ◽  
Robert G. Parker

This paper experimentally investigates the parametric instability of an industrial axially moving belt subjected to multifrequency excitation. Based on the equations of motion, an analytical perturbation analysis is achieved to identify instabilities. The second part deals with an experimental set-up that subjects a moving belt to multi-frequency parametric excitation. A data acquisition technique using optical encoders and based on the angular sampling method is used with success for the first time on a non-synchronous belt transmission. Transmission error between pulleys, pulley/belt slip and tension fluctuation are deduced from pulley rotation angle measurements. Experimental results validate the theoretical analysis. Of particular note is that the instability regions are shifted to lower frequencies than the classical ones due to the multi-frequency excitation.


Author(s):  
T. H. Young ◽  
S. J. Huang ◽  
A. C. Liu

This paper investigates the dynamic stability of an axially moving web which translates with periodically varying speeds and is subjected to partially distributed tensions on two opposite edges. The web is modeled as a rectangular plate simply supported at two opposite edges where the tension is applied, and free at the other two edges. The plate is assumed to possess internal damping, which obeys the Kelvin-Voigt model. The moving speed of the plate is expressed as the sum of a constant speed and a periodical perturbation with a zero mean. Due to the periodically varying speed of the moving plate, terms with time-dependent coefficients appear in the equations of motion, which may bring about parametric instability under certain situations. First, the in-plane stresses of the plate due to the partially distributed edge tensions is determined exactly by the theory of plane elasticity. Then, the dependence on the spatial coordinates in the equations of motion is eliminated by the Galerkin method, which results in a set of discretized system equations in time. Finally, the method of multiple scales is utilized to solve this set of system equations analytically if the periodical perturbation of the moving speed is much smaller as compared with the average speed of the plate, from which the stability boundaries of the moving plate are obtained. Numerical results reveal that only combination resonances of the sum-type appear between modes having the same symmetry class in the transverse direction. Unstable regions of main resonances are generally larger than those of sum-type resonances.


2020 ◽  
Vol 500 (3) ◽  
pp. 4248-4256
Author(s):  
Hongping Deng ◽  
Gordon I Ogilvie ◽  
Lucio Mayer

ABSTRACT Warped accretion discs of low viscosity are prone to hydrodynamic instability due to parametric resonance of inertial waves as confirmed by local simulations. Global simulations of warped discs, using either smoothed particle hydrodynamics or grid-based codes, are ubiquitous but no such instability has been seen. Here, we utilize a hybrid Godunov-type Lagrangian method to study parametric instability in global simulations of warped Keplerian discs at unprecedentedly high resolution (up to 120 million particles). In the global simulations, the propagation of the warp is well described by the linear bending-wave equations before the instability sets in. The ensuing turbulence, captured for the first time in a global simulation, damps relative orbital inclinations and leads to a decrease in the angular momentum deficit. As a result, the warp undergoes significant damping within one bending-wave crossing time. Observed protoplanetary disc warps are likely maintained by companions or aftermath of disc breaking.


2013 ◽  
Vol 2013 ◽  
pp. 1-20 ◽  
Author(s):  
Justine Yasappan ◽  
Ángela Jiménez-Casas ◽  
Mario Castro

Fluids subject to thermal gradients produce complex behaviors that arise from the competition with gravitational effects. Although such sort of systems have been widely studied in the literature for simple (Newtonian) fluids, the behavior of viscoelastic fluids has not been explored thus far. We present a theoretical study of the dynamics of a Maxwell viscoelastic fluid in a closed-loop thermosyphon. This sort of fluid presents elastic-like behavior and memory effects. We study the asymptotic properties of the fluid inside the thermosyphon and the exact equations of motion in the inertial manifold that characterizes the asymptotic behavior. We derive, for the first time, the mathematical derivations of the motion of a viscoelastic fluid in the interior of a closed-loop thermosyphon under the effects of natural convection and a given external temperature gradient.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
V. Kartik ◽  
J. A. Wickert

The parametric excitation of an axially moving plate is examined in an application where a partial foundation moves in the plane of the plate and in a direction orthogonal to the plate’s transport. The stability of the plate’s out-of-plane vibration is of interest in a magnetic tape data storage application where the read/write head is substantially narrower than the tape’s width and is repositioned during track-following maneuvers. In this case, the model’s equation of motion has time-dependent coefficients, and vibration is excited both parametrically and by direct forcing. The parametric instability of out-of-plane vibration is analyzed by using the Floquet theory for finite values of the foundation’s range of motion. For a relatively soft foundation, vibration is excited preferentially at the primary resonance of the plate’s fundamental torsional mode. As the foundation’s stiffness increases, multiple primary and combination resonances occur, and they dominate the plate’s stability; small islands, however, do exist within unstable zones of the frequency-amplitude parameter space for which vibration is marginally stable. The plate’s and foundation’s geometry, the foundation’s stiffness, and the excitation’s amplitude and frequency can be selected in order to reduce undesirable vibration that occurs along the plate’s free edge.


Author(s):  
Keith W. Buffinton

Abstract Presented in this work are the equations of motion governing the behavior of a simple, highly flexible, prismatic-jointed robotic manipulator performing repetitive maneuvers. The robot is modeled as a uniform cantilever beam that is subject to harmonic axial motions over a single bilateral support. To conveniently and accurately predict motions that lead to unstable behavior, three methods are investigated for determining the boundaries of unstable regions in the parameter space defined by the amplitude and frequency of axial motion. The first method is based on a straightforward application of Floquet theory; the second makes use of the results of a perturbation analysis; and the third employs Bolotin’s infinite determinate method. Results indicate that both perturbation techniques and Bolotin’s method yield acceptably accurate results for only very small amplitudes of axial motion and that a direct application of Floquet theory, while computational expensive, is the most reliable way to ensure that all instability boundaries are correctly represented. These results are particularly relevant to the study of prismatic-jointed robotic devices that experience amplitudes of periodic motion that are a significant percentage of the length of the axially moving member.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
R. D. Firouz-Abadi ◽  
M. Rahmanian ◽  
M. Amabili

The present study considers the free vibration analysis of moderately thick conical shells based on the Novozhilov theory. The higher order governing equations of motion and the associate boundary conditions are obtained for the first time. Using the Frobenius method, exact base solutions are obtained in the form of power series via general recursive relations which can be applied for any arbitrary boundary conditions. The obtained results are compared with the literature and very good agreement (up to 4%) is achieved. A comprehensive parametric study is performed to provide an insight into the variation of the natural frequencies with respect to thickness, semivertex angle, circumferential wave numbers for clamped (C), and simply supported (SS) boundary conditions.


2021 ◽  
Author(s):  
Konstantina Ntarladima ◽  
Michael Pieber ◽  
Johannes Gerstmayr

Abstract The present paper addresses axially moving beams with co-moving concentrated masses while undergoing large deformations. For the numerical modeling, a novel beam finite element is introduced, which is based on the absolute nodal coordinate formulation extended with an additional Eulerian coordinate to represent the axial motion. The resulting formulation is well known as Arbitrary Lagrangian Eulerian (ALE) method, which is often used for axially moving beams and pipes conveying fluids. As compared to previous formulations, the present formulation allows us to introduce the Eulerian part by an independent coordinate, which fully incorporates the dynamics of the axial motion, while the shape functions remain independent of the beam coordinates and are thus constant. The proposed approach, which is derived from an extended version of Lagrange’s equations of motion, allows for the investigation of the stability of axially moving beams for a certain axial velocity and stationary state of large deformation. A multibody modeling approach allows us to extend the beam formulation for co-moving discrete masses, which represent concentrated masses attached to the beam, e.g., gondolas in ropeway systems, or transported masses in conveyor belts. Within numerical investigations we show that a larger number of discrete masses behaves similarly as the case of (continuously) distributed mass along the beam.


2000 ◽  
Author(s):  
Paulo B. Gonçalves ◽  
Zenón J. G. N. Del Prado

Abstract This paper discusses the dynamic instability of circular cylindrical shells subjected to time-dependent axial edge loads of the form P(t) = P0+P1(t), where the dynamic component p1(t) is periodic in time and P0 is a uniform compressive load. In the present paper a low dimensional model, which retains the essential non-linear terms, is used to study the non-linear oscillations and instabilities of the shell. For this, Donnell’s shallow shell equations are used together with the Galerkin method to derive a set of coupled non-linear ordinary differential equations of motion which are, in turn, solved by the Runge-Kutta method. To study the non-linear behavior of the shell, several numerical strategies were used to obtain Poincaré maps, stable and unstable fixed points, bifurcation diagrams and basins of attraction. Particular attention is paid to two dynamic instability phenomena that may arise under these loading conditions: parametric instability and escape from the pre-buckling potential well. The numerical results obtained from this investigation clarify the conditions, which control whether or not instability may occur. This may help in establishing proper design criteria for these shells under dynamic loads, a topic practically unexplored in literature.


2019 ◽  
Vol 11 (02) ◽  
pp. 1950021 ◽  
Author(s):  
Yuanbin Wang ◽  
Hu Ding ◽  
Li-Qun Chen

This paper clarified kinematic aspects of motion of axially moving beams undergoing large-amplitude vibration. The kinematics was formulated in the mixed Eulerian–Lagrangian framework. Based on the kinematic analysis, the governing equations of nonlinear vibration were derived from the extended Hamilton principle and the higher-order shear beam theory. The derivation considered the effects of material parameters on the beam deformation. The proposed governing equations were compared with a few previous governing equations. The comparisons show that proposed equations are with higher precision. Besides, the proposed equations can be viewed as the asymptotic governing equations of Lagrange’s equations of motion for large displacement. Finally, the corresponding boundary conditions and the comparison between the presented model equation and classical model equation were provided.


Sign in / Sign up

Export Citation Format

Share Document