Hydrodynamic Thrust Bearings: Theory and Experiment

1991 ◽  
Vol 113 (3) ◽  
pp. 633-638 ◽  
Author(s):  
A. K. Tieu

In this paper results from experimental studies and computer simulation of hydro-dynamic tilting thrust bearings are presented. The bearing performance in terms of outlet film thickness, friction coefficient, and bearing temperature was measured in a high speed thrust bearing test rig. The numerical simulation involves the solution of the generalized Reynolds equation and the energy equation, which considers thermal effects on the oil viscosity and the squeezing of the oil film.

Author(s):  
Ioannis Chatzisavvas ◽  
Aydin Boyaci ◽  
Andreas Lehn ◽  
Marcel Mahner ◽  
Bernhard Schweizer ◽  
...  

This work investigates the influence of hydrodynamic thrust bearings on the lateral rotor oscillations. Four thrust bearing models are compared in terms of their predictions of the oil-film pressure (Reynolds equation), the oil-film temperature (energy equation) and the load capacity. A detailed thrust bearing model using the generalized Reynolds equation and the 3D energy equation, a model using the standard Reynolds equation with a 2D energy equation, a model where the standard Reynolds equation and the 2D energy equation are decoupled and finally an isothermal thrust bearing model are presented. It is shown that in lower rotational speeds, the four models produce almost the same results. However, as the rotational speed is increased, the necessity for a thermo-hydrodynamic model is demonstrated. Run-up simulations of a turbocharger rotor/bearing system are performed, using an isothermal thrust bearing model with different inlet oil-temperatures. The influence of the oil-temperature of the thrust bearing on the subsynchronous rotor oscillations is investigated. Finally, a thermo-hydrodynamic model is compared with an isothermal in run-up simulations, where the influence of the variable oil-viscosity is discussed.


Lubricants ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 44
Author(s):  
Christian Ziese ◽  
Cornelius Irmscher ◽  
Steffen Nitzschke ◽  
Christian Daniel ◽  
Elmar Woschke

The vibration behaviour of turbocharger rotors is influenced by the acting loads as well as by the type and arrangement of the hydrodynamic bearings and their operating condition. Due to the highly non-linear bearing behaviour, lubricant film-induced excitations can occur, which lead to sub-synchronous rotor vibrations. A significant impact on the oscillation behaviour is attributed to the pressure distribution in the hydrodynamic bearings, which is influenced by the thermo-hydrodynamic conditions and the occurrence of outgassing processes. This contribution investigates the vibration behaviour of a floating ring supported turbocharger rotor. For detailed modelling of the bearings, the Reynolds equation with mass-conserving cavitation, the three-dimensional energy equation and the heat conduction equation are solved. To examine the impact of outgassing processes and thrust bearing on the occurrence of sub-synchronous rotor vibrations separately, a variation of the bearing model is made. This includes run-up simulations considering or neglecting thrust bearings and two-phase flow in the lubrication gap. It is shown that, for a reliable prediction of sub-synchronous vibrations, both the modelling of outgassing processes in hydrodynamic bearings and the consideration of thrust bearing are necessary.


1986 ◽  
Vol 108 (2) ◽  
pp. 219-224 ◽  
Author(s):  
R. Boncompain ◽  
M. Fillon ◽  
J. Frene

A general THD theory and a comparison between theoretical and experimental results are presented. The generalized Reynolds equation, the energy equation in the film, and the heat transfer equation in the bush and the shaft are solved simultaneously. The cavitation in the film, the lubricant recirculation, and the reversed flow at the inlet are taken into account. In addition, the thermoelastic deformations are also calculated in order to define the film thickness. Good agreement is found between experimental data and theoretical results which include thermoelastic displacements of both the shaft and the bush.


2013 ◽  
Vol 365-366 ◽  
pp. 304-308
Author(s):  
Lei Wang

An analysis is conducted and solutions are provided for the dynamic performance of high speed hybrid thrust bearing. By adopting bulk flow theory, the turbulent Reynolds equation is solved numerically with the different orifice diameter and supply pressure. The results show that increasing supply pressure can significantly improve the bearing stiffness and damping, while the orifice diameters make a different effect on the bearing stiffness and damping.


Author(s):  
ZS Zhang ◽  
XD Dai ◽  
YB Xie

Under severe operating conditions, the thermal effects and various deformations play an important role in determining the performance of misaligned plain journal bearings. However, the thermal effects and various deformations are rarely considered simultaneously in most studies on the misaligned plain journal bearings. In this article, a comprehensive thermoelastohydrodynamic model of the misaligned plain journal bearings is developed that involves the synthetic solution of the generalized Reynolds equation, three-dimensional energy equation, and heat conduction equations of the solids. Based on this model, series of simulation results are provided to examine the influence of the thermal effects and deformations on the behavior of the misaligned plain journal bearings. In addition, the comparisons between the thermohydrodynamic and complete thermoelastohydrodynamic model are also presented for different misalignment angle and magnitude. Results show that the thermal effects and various deformations should not be ignored because of their significant influence on the film thickness, film pressure as well as other bearings characteristics.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Nguyen LaTray ◽  
Daejong Kim

Abstract Small gas foil bearings (FBs) with shaft diameter below 25 mm can find many applications in air compressors for fuel cells, electrical turbo chargers, small unmanned air vehicles, turbo alternators, etc. These small machines are characterized by very light load to the radial FBs, and thus rotordynamics stability is more challenging than load capacity. However, a main challenge of gas foil thrust bearings (GFTBs) is how to increase the load capacity, and the challenge remains the same regardless of the size. In previous publications on experimental studies on GFTBs, the measured load capacity is well below the prediction due to challenges in testing as well as manufacturing of GFTBs. Difficulty in achieving the design load capacity often leads to increasing the bearing size in actual applications with penalty of higher power loss. This paper presents design feature of a novel GFTB with outer diameter of 38 mm and static performance up to 155 krpm under external load of 75 N using a high-speed test rig. The 38 mm GFTB presented in this paper is a three-layered structure for easy design and manufacturing, and the unique design feature allows easy scale down and scale up to different sizes. Reynolds equations for compressible gas and the two-dimensional thin plate model were adopted for fluid–structure interaction simulation to predict load capacity and power loss of the GFTB. The predicted power loss and load capacity agree well with the measurements.


Author(s):  
Jitesh Kumar ◽  
Debanshu S Khamari ◽  
Suraj K Behera ◽  
Ranjit K Sahoo

Gas foil bearings are often used in high-speed turbomachinery such as turboexpanders and turbochargers due to their merits over simple gas-lubricated bearings. The merits of gas foil bearings include their ability to tailor dynamic parameters such as stiffness and damping. Gas foil bearings usually have low clearance and operate at a high rotational speed, which eventually leads to velocity slip at the solid–fluid interface. This article investigates the effect of slip flow on various parameters of gas foil thrust bearings. A numerical model is formulated to predict pressure, film thickness and temperature distribution of helium lubricated gas foil thrust bearing at high rotating speed. The Reynolds equation is modified by assuming first-order slip coupled with the structural (compliant) and energy equation. The temperature-dependent viscosity and density of the fluid are also considered in the Reynolds equation to predict the thermohydrodynamic behaviour of gas foil thrust bearings. The numerical model thus developed uses a finite-difference method and the Newton–Raphson method to solve the Reynolds equation,whereas the successive over-relaxation method is used to solve the energy equation. Various performance parameters are compared for slip and no-slip conditions for gas foil thrust bearings. The results show a considerable difference between the two phenomena. Also, the conventional Reynolds equation tends to overestimate the load-carrying capacity.


Author(s):  
Yu Guo ◽  
Yu Hou ◽  
Qi Zhao ◽  
Xionghao Ren ◽  
Shuangtao Chen ◽  
...  

Foil bearing is considered to be a promising supporting technology in high-speed centrifugal machinery. Due to the high-speed shearing effect in the viscous lubricant film, heat generation could not be ignored. In this paper, a thermo-elastic model of the multi-leaf foil thrust bearing is proposed to predict its thermal and static characteristics. In the model, modified Reynolds equation, energy equation, and Kirchhoff equation are solved in a coupling way. The contact area between the foil and welding plate is taken into account. Besides, the effect of cooling air on the bearing temperature is investigated. The ultimate load capacity and transient overload failure process of the bearing is analyzed and discussed. The effect of rotation speed on the bearing temperature is more obvious than that of the bearing load. The bearing temperature drops obviously by introducing the cooling air, and the cooling effect is improved with the supply pressure. The transient overload failure of the bearing occurs when the bearing load exceeds the ultimate value.


Author(s):  
Bo Zhang ◽  
Shemiao Qi ◽  
Sheng Feng ◽  
Haipeng Geng ◽  
Yanhua Sun ◽  
...  

Two multileaf gas foil journal bearings with backing bump foils and one set of gas foil thrust bearings were designed, fabricated, and used in a 100 kW class microturbine simulated rotor system to ensure stability of the system. Meanwhile, a preliminary test rig had been built to verify the simulated system stability. The rotor synchronous and subsynchronous responses were well controlled by using of the gas foil bearings. It is on the multileaf gas foil bearings with backing bump foils that the test was conducted and verified for the first time in open literatures. The success in the experiments shows that the design and fabrication of the rotor and the gas foil bearings can provide a useful guide to the development of the advanced high speed rotating machinery.


2017 ◽  
Vol 69 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Abdelrasoul M. Gad

Purpose Compliant foil thrust bearings are promising bearings for high-speed oil-free turbomachinery. However, most previous experimental and numerical approaches to investigate the performance of these bearings have ignored the effect of bearing runner misalignment. Therefore, this paper aims to evaluate the effects of static and dynamic angular misalignments of the bearing runner on the performance of a gas-lubricated foil thrust bearing. Design/methodology/approach The bearing runner is allowed a maximum angular misalignment that produces a minimum gas film thickness as low as 20 per cent of the nominal clearance. Then, the variations of bearing load carrying capacity, viscous power loss and stiffness and damping coefficients of the gas film with runner misalignment are thoroughly analyzed. The flow in the gas film is modeled with compressible Reynolds equation along with the Couette approximation technique, and the deformation of the compliant bearing is calculated with a robust analytical model. Small perturbations method is used to calculate the force and moment dynamic coefficients of the gas film. Findings The results show that misaligned foil thrust bearings are capable of developing a restoring moment sufficient enough to withstand the imposed misalignments. Furthermore, the enhanced hydrodynamic effect ensures a stable operation of the misaligned bearing, and the results highlighted the role of the compliant bearing structure to maintain foil bearing prominent features even at misaligned conditions. Originality/value The value of this study is the evaluation of the effects of runner angular misalignments on the static and dynamic characteristics of Generation II bump-type foil thrust bearing.


Sign in / Sign up

Export Citation Format

Share Document