Regeneration Characteristics of Adsorbent in the Integrated Desiccant/Collector

1993 ◽  
Vol 115 (3) ◽  
pp. 169-175 ◽  
Author(s):  
Y. Saito

This study presents a solar desiccant system using an adsorbent in an “integrated desiccant/solar collector” that uses direct solar energy as a heat source for efficient regeneration of the adsorbent. The objective of this study is to investigate an integrated desiccant/collector in which the adsorbent absorbs solar radiation fully and is heated for regeneration. Another objective is to obtain the regeneration characteristics in the equipment proposed by both experiments and simulations. Throughout this study, silica gel is used as the adsorbent.

2012 ◽  
Vol 16 (suppl. 2) ◽  
pp. 471-482 ◽  
Author(s):  
Velimir Stefanovic ◽  
Sasa Pavlovic ◽  
Marko Ilic ◽  
Nenad Apostolovic ◽  
Dragan Kustrimovic

Solar energy may be practically utilized directly through transformation into heat, electrical or chemical energy. A physical and mathematical model is presented, as well as a numerical procedure for predicting thermal performances of the P2CC solar concentrator. The demonstrated prototype has the reception angle of 110? at concentration ratio CR = 1.38, with the significant reception of diffuse radiation. The solar collector P2CC is designed for the area of middle temperature conversion of solar radiation into heat. The working fluid is water with laminar flow through a copper pipe surrounded by an evacuated glass layer. Based on the physical model, a mathematical model is introduced, which consists of energy balance equations for four collector components. In this paper, water temperatures in flow directions are numerically predicted, as well as temperatures of relevant P2CC collector components for various values of input temperatures and mass flow rates of the working fluid, and also for various values of direct sunlight radiation and for different collector lengths. The device which is used to transform solar energy to heat is referred to as solar collector. This paper gives numerical estimated changes of temperature in the direction of fluid flow for different flow rates, different solar radiation intensity and different inlet fluid temperatures. The increase in fluid flow reduces output temperature, while the increase in solar radiation intensity and inlet water temperature increases output temperature of water. Furthermore, the dependence on fluid output temperature is determined, along with the current efficiency by the number of nodes in the numerical calculation.


2013 ◽  
Vol 368-370 ◽  
pp. 1228-1231
Author(s):  
Fen E Hu ◽  
Sheng Xian Wei ◽  
Neng Bang Hou

A solar radiation model to determine solar energy collection on solar collector array with different aspect ratios has been developed. The relations between the aspect ratio and the average daily solar radiation collection on the collector array have been deeply studied. The results show that there is an optimum aspect ratio to maximize the solar energy collection on the collector arrays. The optimum aspect ratios of the 1000 m2 collector array for Haikou, Kunming, Lhasa and Beijing are 10/1, 1/3, 5/1 and 10/1.The optimum aspect ratios of 1000 m2, 500 m2, 200 m2 and 100 m2 collector arrays for Kunming are 1/3, 3/1, 7/1 and 1/5, respectively.


Agrotek ◽  
2018 ◽  
Vol 2 (4) ◽  
Author(s):  
Wilson Palelingan Aman

Drying process is one of important stage in handling of agricultural products. However, this process required much energy to remove moisture from the product. Because of that, it was needed a dryer to remove water from inside of products. A dryer with solar energy as a heat source combined with heat energy from corncob biomass was designed and used in corn dried. The dryer is usually known as green house effect-hybrid (GHE-hybrid). GHE-hybrid consists of absorber, product holder, fans to remove moisture from dried product, heat exchanger, stove and water tank. The heat source used in dryer comes from solar radiation and biomass burned in stove. The objective of this research was to evaluate performance of dryer use solar energy and corncob as heating sources. Results of this research showed that drying process of 1526 kg of corn with initial moisture content 25.7% wet basic until 16.7% wet basic needed drying time of 14 hours. The corncobs that were needed to remove the moisture was about 180 kg. The energy calculated in this drying process from corncob, diesel fuel, solar radiation which were about 3150 MJ or 62%, 1739.71MJ or 34%, 204.94 MJ or 4%, respectively. The research also found that the thermal eficiency of dryer was 28%, eficiency of drying heat was 59.62%, total eficiency was 11.23% and specific energy consumption was 31522,52 kJ/kg.


2012 ◽  
Vol 727-728 ◽  
pp. 114-118 ◽  
Author(s):  
G.O. Prado ◽  
A.M.M. Arouca ◽  
R.C.C. Domingues ◽  
Luiz Gustavo Martins Vieira ◽  
João Jorge Ribeiro Damasceno

The search for energetic alternatives and the concern about water preservation are novel ideas that challenge the humanity. This project was inspired in these challenges, being based in the utilization of solar energy for desalination of brackish water. A parabolic solar concentrator captures the solar radiation heating thermal fluid, which is closed-circuit circulated into a evaporator, which has three trays. The first has the functions of storing, pre-heating and condensing. The second works as an evaporator and the third stores the evaporated water. The system was tested with and without pump. The thermal fluid temperature reached 105°C and the amount of evaporated water reached 15kg/day. The equipment meets the social demand for sustainable inventions.


Author(s):  
Himanshu Tyagi ◽  
Patrick E. Phelan ◽  
Ravi S. Prasher

Solar energy can potentially be used to convert biomass into more readily usable fuel. The use of solar energy in such a process improves the overall conversion efficiency of the system significantly by eliminating combustion of a portion of biomass needed to heat the rest of it to a temperature where pyrolysis occurs. The present study models the thermochemical conversion process during pyrolysis of biomass matter into product gases. Concentrated solar radiation is used as the source of heating of the biomass. The biomass is indirectly heated by a mixture of molten salts (Na2CO3 and K2CO3) and nanoparticles (copper), which acts as the absorbing medium and in turn heats the biomass matter (cellulose). A two-stage heat transfer and chemical reaction analysis is carried out in order to simulate the simplified operating conditions of a solar-powered gasifier. The temperature of the molten salt at the exit of the reactor is held fixed at 1000 K (727°C). The calculations are carried out at different values of solar concentration factor ranging from 10 to 60. The results show that the temperature of the molten salt mixture at the exit of the solar collector increases with an increase in the solar concentration factor. Moreover the temperature inside the biomass reactor is a function of the concentration factor as well and largely the determining factor of the rate of biomass conversion into product gases. At the highest concentration factor (Cf = 60), the model predicts that the reactor is able to convert 1.1 tons of biomass into product gases each hour using 900 kW of solar radiation at an overall efficiency of 8%. The main finding of this study is that under similar operating conditions a solar collector using a direct absorption fluid (mixture of nanoparticles and molten salt) would require significantly less concentration factor (an order of magnitude reduction) than a conventional solar collector. A conventional solar collector is defined as one where the solar radiation heats up a solid surface (such as tube walls) which in turn heats up the working fluid (molten salt). Such a reduction in concentration factor would translate into lower concentrator area, and consequently lower initial capital cost.


2020 ◽  
Vol 6 (1) ◽  
pp. 44
Author(s):  
Maidi Saputra ◽  
Rizal Rizal ◽  
Al Munawir

The use of solar energy in Indonesia is classified as having high potential; it is caused by Indonesia as a country on the equator. The use of solar energy today is widely used in the electricity generation sector and some in water heating and cooling systems. Excessive use of fossil energy will result in uncontrolled air pollution in the years to come. Increasing pollution in the air increases the greenhouse effect, and it causes an increase in acidic substances in the air, distribution of CO2 emissions, and an increase in room temperature. Therefore it is necessary to use energy derived from the sun in various activities aimed at reducing the use of fossil energy and avoiding global warming caused by an increase in the intensity of solar radiation on the surface of the earth. From the results of the study, three types of straight horizontal fin have been developed that can be used in solar collectors. The use and utilization of this fin aim to improve the efficiency of the performance of the solar collector. Kata kunci: Solar Energy, Solar Collector, Intensity of solar radiation, Horizontal Straight Fin, Increased Efficiency. 


Author(s):  
Shigeki Hirasawa ◽  
Tsuyoshi Kawanami

We studied effects of parameters on collector efficiency of evacuated solar collector system to get hot water near 100°C. Change of temperature in the solar collector system is calculated for a daily change of solar radiation with 5 minutes cloud. Six operation-control methods are examined. Calculation results show that the effect of the control methods on average collector efficiency for one day is small as 1%. Best control method to minimize effect of the cloud on exit temperature fluctuation of the water is that the flow rate of the water is controlled proportional to the solar radiation. Two types of heat storage system are examined: a non-circulating type (supply new water and accumulate heated water in the heat storage tank) and a circulating type (circulating water from the heat storage tank). The non-circulating type is effective to use the solar energy in the daytime, and the circulating type is effective to use solar energy in the evening. Also, we measured temperature of a collector plate under actual solar radiation in a fine day.


2020 ◽  
Vol 7 (1) ◽  
pp. G9-G14
Author(s):  
S. Shkrylova ◽  
V. Kostenko ◽  
I. Skrynetska

In the conditions of the global ecological crisis in the world and Ukraine, the issue of finding alternative energy sources becomes relevant. One of the most common types of renewable energy is solar energy. In Ukraine today, the most promising direction of using solar energy is its direct transformation into low-potential thermal energy. To get electric power, solar radiation is the mere alternative to electric power generated from mined fuel, and without the pollution of air and water, or adverse consequences manifested in global warming. The disadvantage of this type of installation is the limitation of the duration of light time, as well as the effect of cloudiness. During the day, the number of solar radiation changes, to stabilize it is necessary to accumulate and accumulate it for further use, the technical implementation of stable operation of solar installation due to the use of terrestrial radiation and the accumulator of a specific part of solar energy is proposed. The purpose of the work is experimental studies to ensure the stable operation of the solar collector under cloudy conditions. The paper is aimed at the stabilization of the operation of the solar installation and to obtain additional heat after the Sun’s cloud cover. The use of a solar thermal collector is advisable in solar heating and hot water systems in conditions of alternating solar radiation. The results of physical modeling have proved the efficiency of the method of combining types of thermal radiation, due to the accumulation of energy it is possible to increase the quantitative index of solar energy in the conditions of cloudiness by 3 times Keywords: alternative energy, solar energy, solar collector, thermal energy, clouds, terrestrial radiation, ecology.


2016 ◽  
Vol 6 (2) ◽  
Author(s):  
M. Wirawan ◽  
R. Kurniawan ◽  
Mirmanto Mirmanto

Recently the use of energy increases. It leads to the energy crisis. Therefore, it is important to promote alternative energy (renewable energy). One of renewable energies, which is potential in Indonesia, is solar enrgy. Solar energy can be harvested using a solar collector. This device can collect or absorb solar radiation and convert it to thermal energy. In this study, two identical collectors are used. One collector consists of 7 pipes and the other comprises 9 pipes. The overall dimension of the collector is 100 cm x 80 cm x 10 cm and the absorber of the collector is made of gravels with a mesh size of 9.5 -12.5 mm. The collectors are placed with a slope of 15o facing to North. The volumetric rates of water used in the experiments are 300 cc / min, 350 cc / min and 400 cc / min. The results show that the collector with 9 pipes is better than that with 7 pipes.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1816
Author(s):  
Xiaohang Shen ◽  
Nianping Li ◽  
Yongga A

Three connection methods for the combined heating systems of a closed-type heat-source tower heat pump (CHTHP) and solar collector (SC) were proposed in this paper: the heat-source tower (HST) and solar collector were connected in series (HST+SC), and the solar collector and heat pump (HP) condenser were connected in series (SC+HP) and in parallel (SC//HP). The calculation module of the closed heat-source tower was built using programming software based on C++ language, and three corresponding calculation models of the combined heating systems were established in the TRNSYS. Under the climatic conditions of the cold season in Changsha, the combined heating performance of the three systems was simulated and analyzed. The results indicate that the simulation results of the established models are in good agreement with the test results, and the simulation results can be used for the research of the system’s combined heating performance. When the outdoor air temperature and solar radiation intensity are low, the HST+SC system has the best heating performance; however, when the solar radiation intensity and ambient temperature are high, the heating performance of the SC//HP system is the best. When the solar radiation intensity and outdoor air temperature are between the previous two working conditions, the SC+HP system is the best performer for heating among the three systems. On the basis of the collector area and heat pump power designed in this study, the best operating condition interval diagrams of the three combined heating systems are established.


Sign in / Sign up

Export Citation Format

Share Document