Experimental and Numerical Analysis of Read/Write Head Suspension Dynamics for High-Performance Floppy Drive Systems

1990 ◽  
Vol 112 (1) ◽  
pp. 26-32 ◽  
Author(s):  
G. M. Frees ◽  
D. K. Miu

Read/write head suspensions are critical components of high-performance floppy disk drives. Their dynamics affect head/media compliance, wear, and tracking performance. Vibration measurements are necessary in order to verify and adjust finite element models, to observe the influence of actual loading and operating conditions, and to study the effects of unmodeled components such as electrical wires and adhesives. A nonintrusive measurement technique using a Laser Doppler Vibrometer is utilized to measure the submicron vibrations. Excitation of the suspension is provided by a specially designed miniature air hammer and a piezoelectric transducer. Natural frequencies and mode shapes are extracted from the measurements and compared with numerical data from the finite element model. Research shows that boundary conditions are the most important parameters in the modeling of the suspension. A new design is proposed, using the verified model, to increase the tracking performance of the suspension. Synergy between experimentation and numerical analysis is emphasized.

Author(s):  
Bruna Nabuco ◽  
Sandro D. Amador ◽  
Evangelos I. Katsanos ◽  
Ulf T. Tygesen ◽  
Erik Damgaard Christensen ◽  
...  

Abstract Aiming to ensure the structural integrity of an offshore structure, wave-induced responses have been measured during normal operating conditions. Operational Modal Analysis is applied to the data obtained from continuously monitoring the structure. Sensors placed only on the topside of an offshore platform are sufficient to provide information to identify the modal properties of the structure, such as natural frequencies, damping ratios, and mode shapes. A finite element model is created and updated in line with the identified dynamic properties for applying a modal expansion technique in the interest of accessing information at any point of the structure. Wave radars are also placed at the platform from which the wave forces are calculated based on basic industrial standard models. In this way, the wave kinematics are estimated according to the linear wave theory associated with Wheeler stretching. Since this study is related to offshore structures composed by slender elements, the wave forces are estimated using Morison formulation. By assigning typical values to the drag and inertia coefficients, wave loads are estimated and applied to the updated finite element model. For the diffraction effect, the wave load has also been evaluated according to MacCamy and Fuchs theory. The responses obtained from this procedure are compared with measured responses. In addition to describing the process, this paper presents a case study to verify the theory using monitoring data from a tripod jacket. Results indicate realistic response estimation that contributes to the knowledge about the state of the structure.


Author(s):  
Troy Lundstrom ◽  
Charlie Sidoti ◽  
Nader Jalili

The dynamic control of stacked-plate mechanical systems such as circuit board assemblies is a common technical problem that often requires a complete description of the open loop system dynamics prior to controller development. Often, a preliminary finite element model (FEM) of the test article is developed to understand the dynamics of the system to perform a modal test. The results of this modal test must then be used to update the stiffness, mass and damping matrices to yield correct FEM frequencies mode shapes and damping. This work describes the mathematical development of a finite element model of a multi-plate test article and proceeds with a model update using differentiated velocity data collected at discrete points on the structure with a laser Doppler vibrometer (LDV) and drive point measurements collected at the excitation location with an impedance head. Using these data, accelerance FRFs were computed and the first three flexible mode shapes were estimated and these shapes were compared to the corresponding FEM shapes using both percent frequency difference and modal assurance criterion (MAC). Several parameters of the system model were modified yielding improved correlation with the experimental results.


1999 ◽  
Author(s):  
S. A. Lipsey ◽  
Y. W. Kwon

Abstract Damage reduces the flexural stiffness of a structure, thereby altering its dynamic response, specifically the natural frequency, damping values, and the mode shapes associated with each natural frequency. Considerable effort has been put into obtaining a correlation between the changes in these parameters and the location and amount of the damage in beam structures. Most numerical research employed elements with reduced beam dimensions or material properties such as modulus of elasticity to simulate damage in the beam. This approach to damage simulation neglects the non-linear effect that a crack has on the different modes of vibration and their corresponding natural frequencies. In this paper, finite element modeling techniques are utilized to directly represent an embedded crack. The results of the dynamic analysis are then compared to the results of the dynamic analysis of the reduced modulus finite element model. Different modal parameters including both mode shape displacement and mode shape curvature are investigated to determine the most sensitive indicator of damage and its location.


Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an isotropic, elastic annular disk constrained at some points on the inner and outer boundaries are investigated. The presented study is relevant to various practical problems including disks clamped by bolts along the inner and outer edges or the railway wheel vibrations. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. The boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to realize clamped conditions at discrete points. The frequency parameters for different point constraint conditions are evaluated and compared with those computed from a finite element model to demonstrate the validity of the proposed method. The computed mode shapes are presented for a disk with different point constraints at the inner and outer boundaries to demonstrate the free in-plane vibration behavior of the disk. Results show that addition of point supports causes some of the modes to split into two different frequencies with different mode shapes. The effects of different orientations of multiple point supports on the frequency parameters and mode shapes are also discussed.


Author(s):  
Scott D. Ironside ◽  
L. Blair Carroll

Enbridge Pipelines Inc. operates the world’s longest and most complex liquids pipeline network. As part of Enbridge’s Integrity Management Program In-Line Inspections have been and will continue to be conducted on more than 15,000 km of pipeline. The Inspection Programs have included using the most technologically advanced geometry tools in the world to detect geometrical discontinuities such as ovality, dents, and buckles. During the past number of years, Enbridge Pipelines Inc. has been involved in developing a method of evaluating the suitability of dents in pipelines for continued service. The majority of the work involved the development of a method of modeling the stresses within a dent using Finite Element Analysis (FEA). The development and validation of this model was completed by Fleet Technology Limited (FTL) through several projects sponsored by Enbridge, which included field trials and comparisons to previously published data. This model combined with proven fracture mechanics theory provides a method of determining a predicted life of a dent based on either the past or future operating conditions of the pipeline. CSA Standard Z662 – Oil and Gas Pipeline Systems provides criteria for the acceptability of dents for continued service. There have been occurrences, however, where dents that meet the CSA acceptability criteria have experienced failure. The dent model is being used to help define shape characteristics in addition to dent depth, the only shape factor considered by CSA, which contribute to dent failure. The dent model has also been utilized to validate the accuracy of current In-Line Inspection techniques. Typically a dent will lose some of its shape as the overburden is lifted from the pipeline and after the indentor is removed. Often there can be a dramatic “re-rounding” that will occur. The work included comparing the re-rounded dent shapes from a Finite Element model simulating the removal of the constraint on the pipe to the measured dent profile from a mold of the dent taken in the field after it has been excavated. This provided a measure of the accuracy of the tool. This paper will provide an overview of Enbridge’s dent management program, a description of the dent selection process for the excavation program, and a detailed review of the ILI validation work.


2006 ◽  
Vol 129 (1) ◽  
pp. 58-65 ◽  
Author(s):  
B. Scott Kessler ◽  
A. Sherif El-Gizawy ◽  
Douglas E. Smith

The accuracy of a finite element model for design and analysis of a metal forging operation is limited by the incorporated material model’s ability to predict deformation behavior over a wide range of operating conditions. Current rheological models prove deficient in several respects due to the difficulty in establishing complicated relations between many parameters. More recently, artificial neural networks (ANN) have been suggested as an effective means to overcome these difficulties. To this end, a robust ANN with the ability to determine flow stresses based on strain, strain rate, and temperature is developed and linked with finite element code. Comparisons of this novel method with conventional means are carried out to demonstrate the advantages of this approach.


Author(s):  
K. Lai ◽  
X. Sun ◽  
C. Dasch

Resonance inspection uses the natural acoustic resonances of a part to identify anomalous parts. Modern instrumentation can measure the many resonant frequencies rapidly and accurately. Sophisticated sorting algorithms trained on sets of good and anomalous parts can rapidly and reliably inspect and sort parts. This paper aims at using finite-element-based modal analysis to put resonance inspection on a more quantitative basis. A production-level automotive steering knuckle is used as the example part for our study. First, the resonance frequency spectra for the knuckle are measured with two different experimental techniques. Next, scanning laser vibrometry is used to determine the mode shape corresponding to each resonance. The material properties including anisotropy are next measured to high accuracy using resonance spectroscopy on cuboids cut from the part. Then, finite element model (FEM) of the knuckle is generated by meshing the actual part geometry obtained with computed tomography (CT). The resonance frequencies and mode shapes are next predicted with a natural frequency extraction analysis after extensive mesh size sensitivity study. The good comparison between the predicted and the experimentally measured resonance spectra indicate that finite-element-based modal analyses have the potential to be a powerful tool in shortening the training process and improving the accuracy of the resonance inspection process for a complex, production level part. The finite element based analysis can also provide a means to computationally test the sensitivity of the frequencies to various possible defects such as porosity or oxide inclusions especially in the high stress regions that the part will experience in service.


Author(s):  
M. A. Boogaard ◽  
A. L. Schwab ◽  
Z. Li

As vibration based condition monitoring requires a good understanding of the dynamic behaviour of the structure, a good model is needed. At the TU Delft a train borne monitoring system is being developed which currently focusses on crossings. Crossings are prone to very fast degradation due to impact loading. In this paper a finite element model of a free floating frog is presented and validated up to a 100 Hz using dynamic impact measurements. The mode shapes of the free floating frog are then also compared to some preliminary results from an in-situ test. This comparison shows that the in-situ frequencies can be up to twice the free floating frequency.


2017 ◽  
Vol 37 (3) ◽  
pp. 611-618 ◽  
Author(s):  
Bin Yang ◽  
Zheng Shi ◽  
Qun Wang ◽  
Feng Xiao ◽  
Tong-Tong Gu ◽  
...  

This study is based on a real finite element human head–neck model and concentrates on its numerical vibration characteristic. Frequency spectrum and mode shapes of the finite element model of human head–neck under mechanical vibration have been calculated. These vibration characteristics are in good agreement with the previous studies. The simulated fundamental frequency of 35.25 Hz is fairly similar to the published documents, and rarely reported modal responses such as “mastication” and flipping of nasal lateral cartilages modes, however, are introduced by our three-dimensional modal analysis. These additional modes may be of interest to surgeons or clinicians who are specialized in temporomandibular or rhinoplasty joint disorder. Modal validation in terms of modal shapes proposes a necessity for elaborate modeling to identify each individual part’s extra frequencies. Furthermore, it also studies the influence of damping on resonant frequencies and biomechanical responses. It is discovered that damping has an inverse proportionality between damping effect on natural frequency and that on biomechanical responses.


Sign in / Sign up

Export Citation Format

Share Document