Mechanisms of Noise Transmission through Helicopter Gearbox Support Struts

1994 ◽  
Vol 116 (4) ◽  
pp. 548-554 ◽  
Author(s):  
M. J. Brennan ◽  
R. J. Pinnington ◽  
S. J. Elliott

Helicopter gearbox support struts are structural members designed to take large compressive and tensile mechanical loads. They also act as vibration transmission paths connecting the major noise and vibration generators of the main rotor and gearbox to the fuselage and cabin. In this paper the mechanisms of vibration transmission through these struts are examined. The differences between the low frequency behavior that is important in the transmission of the rotor vibrations, and the high frequency behavior that is important in the transmission of gear noise are discussed. A flexible element is introduced in series with the strut, and the limitations of this simple passive measure in attenuating longitudinal and flexural vibrations are highlighted. The analysis shows that there is a difference in the mechanisms of vibration transmission between low and high frequencies, and that there are difficulties in applying effective passive vibration isolation measures to this system.

Author(s):  
Takehiko Eguchi ◽  
Yohei Asai ◽  
Kazuhide Ichikawa ◽  
Miki Takada

In this paper, contributions of airborne and structure-borne vibrations to head positioning error of a HDD at high frequencies up to 10 kHz were investigated. The L8 array test was conducted with four two-level factors about vibration isolation between fans and HDDs: A) Removing bracket, B) Attaching foam on backplane, C) Filling foam in the next column, and D) Filling foam in the upper and lower slots. The test results showed there were less interaction between airborne and structure-borne vibration. Then, we set a model of fan vibration transmission and the model parameters were determined so that errors between the estimated and measured values were minimized. As the results, it was confirmed that about 80% of the power of PES was caused by the airborne vibration at the normal case.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Gotthold Fläschner ◽  
Cosmin I. Roman ◽  
Nico Strohmeyer ◽  
David Martinez-Martin ◽  
Daniel J. Müller

AbstractUnderstanding the viscoelastic properties of living cells and their relation to cell state and morphology remains challenging. Low-frequency mechanical perturbations have contributed considerably to the understanding, yet higher frequencies promise to elucidate the link between cellular and molecular properties, such as polymer relaxation and monomer reaction kinetics. Here, we introduce an assay, that uses an actuated microcantilever to confine a single, rounded cell on a second microcantilever, which measures the cell mechanical response across a continuous frequency range ≈ 1–40 kHz. Cell mass measurements and optical microscopy are co-implemented. The fast, high-frequency measurements are applied to rheologically monitor cellular stiffening. We find that the rheology of rounded HeLa cells obeys a cytoskeleton-dependent power-law, similar to spread cells. Cell size and viscoelasticity are uncorrelated, which contrasts an assumption based on the Laplace law. Together with the presented theory of mechanical de-embedding, our assay is generally applicable to other rheological experiments.


2001 ◽  
Vol 674 ◽  
Author(s):  
M.I. Rosales ◽  
H. Montiel ◽  
R. Valenzuela

ABSTRACTAn investigation of the frequency behavior of polycrystalline ferrites is presented. It is shown that the low frequency dispersion (f < 10 MHz) of permeability is associated with the bulging of pinned domain walls, and has a mixed resonance-relaxation character, closer to the latter. It is also shown that there is a linear relationship between the magnetocrystalline anisotropy constant, K1, and the relaxation frequency. The slope of this correlation depends on the grain size. Such a relationship could allow the determination of this basic parameter from polycrystalline samples.


Author(s):  
Metharak Jokpudsa ◽  
Supawat Kotchapradit ◽  
Chanchai Thongsopa ◽  
Thanaset Thosdeekoraphat

High-frequency magnetic field has been developed pervasively. The induction of heat from the magnetic field can help to treat tumor tissue to a certain extent. Normally, treatment by the low-frequency magnetic field needed to be combined with magnetic substances. To assist in the induction of magnetic fields and reduce flux leakage. However, there are studies that have found that high frequencies can cause heat to tumor tissue. In this paper present, a new magnetic application will focus on the analysis of the high-frequency magnetic nickel core with multi-coil. In order to focus the heat energy using a high-frequency magnetic field into the tumor tissue. The magnetic coil was excited by 915 MHz signal and the combination of tissues used are muscle, bone, and tumor. The magnetic power on the heating predicted by the analytical model, the power loss density (2.98e-6 w/m3) was analyzed using the CST microwave studio.


1963 ◽  
Vol 36 (2) ◽  
pp. 451-458 ◽  
Author(s):  
G. E. Decker ◽  
R. W. Wise ◽  
D. Guerry

Abstract A forced oscillating-disk rheometer has been developed which can measure both the low and high frequency dynamic properties of a rubber specimen throughout vulcanization. It may also be used to measure the rheological properties of unvulcanized polymers. The instrument consists of a cone-shaped disk which is embedded in the rubber specimen and oscillated through a small angle while the specimen is heated under pressure. Both stress and strain in terms of torque and displacement, respectively, are measured by appropriate transducers and recorded on an oscillograph. Provisions are made for changing both frequency and strain. At low frequency, the instrument is a convenient tool for determining all of the curing parameters of a rubber specimen. At high frequencies, the change in the dynamic properties of a rubber specimen throughout vulcanization may be continuously followed. A unique feature of the rheometer is that the loss angle may be determined which permits resolution of the measured dynamic stiffness into its elastic and viscous components.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Chao Li ◽  
Sifeng Zhang ◽  
Liyong Gao ◽  
Wei Huang ◽  
Zhaoxin Liu

Locally resonant phononic crystals (LRPCs) beam is characterized by the band gaps; some frequency ranges within which flexural waves cannot propagate freely. So, the LRPCs beam can be used for noise or vibration isolation. In this paper, a LRPCs beam with distributed oscillators is proposed, and the general formula of band gaps and transmission spectrum are derived by the transfer matrix method (TMM) and spectrum element method (SEM). Subsequently, the parameter effects on band gaps are investigated in detail. Finally, a rubber concrete beam is designed to demonstrate the application of distributed LRPCs beam in civil engineering. Results reveal that the distributed LRPCs beam has multifrequency band gaps and the number of the band gaps is equal to that of the oscillators. Compared with others, the distributed LRPCs beam can reduce the stress concentration when subjected to vibration. The oscillator interval has no effect on the band gaps, which makes it more convenient to design structures. Individual changes of oscillator mass or stiffness affect the band gap location and width. When the resonance frequency of oscillator is fixed, the starting frequency of the band gap remains constant, and increasing oscillator mass of high-frequency band gap widens the high-frequency band gap, while increasing oscillator mass of low-frequency gap widens both high-frequency and low-frequency band gaps. External loads, such as the common uniform spring force provided by foundation in civil engineering, are conducive to the band gap, and when the spring force increases, all the band gaps are widened. Taken together, a configuration of LRPCs rubber concrete beam is designed, and it shows good isolation on the vibration induced by the railway. By the presented design flow chart, the research can serve as a reference for vibration isolation of LRPCs beams in civil engineering.


Author(s):  
Ahmad Yusuf Ismail ◽  
Al Munawir ◽  
Noerpamoengkas A

Low-frequency vibration has been troublesome for a mechanical system. Despite the measurement difficulties, low-frequency vibration also creates several environmental effects such as high noise level that is harmful to the human body. One of the methods to reduce vibration is tuning the vibration isolation i.e. spring and damping coefficient. However, the latter method is found to be effective only for the mid-high frequency range. Therefore, this paper proposes an optimization of the spring a.k.a. stiffness coefficient in order to reduce the low-frequency vibration. The Taguchi method is used as an optimization tool since it offers simplicity yet powerful for any field of application, particularly in engineering. Two significant parameters in the spring geometry were selected as the optimization variable in the Taguchi method and evaluated using vibration transmissibility concept. The result shows that the Taguchi method has been successfully obtained the optimum value for the spring geometry purposely to reduce the vibration transmissibility.


2004 ◽  
Vol 218 ◽  
pp. 339-340 ◽  
Author(s):  
J. Kijak ◽  
O. Maron

Spectra of several pulsars with turnover at unusually high frequencies ∼ 1 GHz are presented. These are relatively young pulsars with DM typically larger than for pulsars showing a low-frequency turnover.


2000 ◽  
Vol 177 ◽  
pp. 395-396
Author(s):  
I.F. Malov

Pulsar spectra have three characteristic parts: a low frequency turnover (the region of the maximum), a linear part with a constant spectral index, and a high frequency cut-off (after it the spectrum becomes considerably steeper) (Malofeev et al. 1994). These three parts can be described in the frame of the usual model of curvature radiation (Malov 1979; Ochelkov &amp; Usov 1984; Kuz’min &amp; Solov’ev 1986; Malov &amp; Malofeev 1991). Kramer et al. (1997) have found a flattening in the spectra of 4 pulsars at frequencies above 30 GHz. It cannot be understood in such model. We propose the possible explanation for the unusual behaviour of these spectra.


Sign in / Sign up

Export Citation Format

Share Document