Theoretical and Experimental Analysis of a Cycloidal Speed Reducer

2008 ◽  
Vol 130 (11) ◽  
Author(s):  
Carlo Gorla ◽  
Piermaria Davoli ◽  
Francesco Rosa ◽  
Claudio Longoni ◽  
Franco Chiozzi ◽  
...  

In this paper, a theoretical and experimental investigation on an innovative cycloidal speed reducer is presented. The typical cycloid drive has a planet wheel, the profile of which is the internal offset of an epitrochoid meshing with cylindrical rollers connected to the case. This reducer, on the contrary, has an external ring gear, the transverse profile of which is the external offset of an epitrochoid and engages with the planet wheel by means of cylindrical rollers. This paper investigates the structural characteristics and the kinematic principles of this type of reducer. A theoretical approach based on the theory of gearing (following Litvin’s approach) is developed and compared to a development of Blanche and Yang’s approach. Furthermore, a simplified procedure to calculate the force distribution on cycloid drive elements, its power losses, and theoretical mechanical efficiency is presented. The effects of design parameters on the values of forces are studied for an optimal design of this type of reducer. The theoretical model is tuned on the basis of the results of tests made on purpose. The mechanical efficiency dependency on speed and torque is described. The main aim of this work is to tune a theoretical model in order to predict the operating behavior of the cycloid drive and to improve its design procedure.

Author(s):  
Piermaria Davoli ◽  
Carlo Gorla ◽  
Francesco Rosa ◽  
Claudio Longoni ◽  
Franco Chiozzi ◽  
...  

Compared with common speed reducers, the cycloidal ones (also known as cycloid drives) cover a wider range of transmission ratios, have a higher load-carrying capacity, are smaller, exhibit a smoother running and a good efficiency. These characteristics make them attractive for industrial applications, especially for robotics applications, machine tools and linear axis positioning in assembly machinery. In this paper, a theoretical and experimental investigation on an innovative cycloidal speed reducer will be presented. The typical cycloid drive has a planet wheel, the profile of which is the inner offset of an epitrochoid, meshing with cylindrical rollers connected to the case. This reducer, on the contrary, has an external ring gear, the transverse profile of which is the external offset of an epitrochoid, and engages with the planet wheel by means of cylindrical rollers. This paper will investigate the structural characteristics and the kinematical principles of this type of reducer. A theoretical approach based on the envelope theory (following Litvin’s approach) will be developed and compared with a development of Blanche and Yang’s approach. Furthermore, a simplified procedure to calculate force distribution on cycloid drive elements, as well as its power losses and theoretical mechanical efficiency will be presented. The effects of design parameters on the values of the forces will be studied, for an optimal design of this type of reducer. The theoretical model will be then tuned using the results of tests on a specific rig. As a result of the experimental tests, the reducer mechanical efficiency dependency on speed and torque will be described. The aim of this work is to perform the fine tuning of a theoretical model in order to predict the operating behavior of the cycloid drive, and to improve its design procedure.


1993 ◽  
Vol 115 (3) ◽  
pp. 364-369 ◽  
Author(s):  
C.-P. Roger Ku ◽  
Hooshang Heshmat

This paper describes the second part of an investigation into the mechanism of deformation of the corrugated foil (bump foil) strips used in compliant surface foil bearings. In the earlier work, a theoretical model was developed to predict the structural characteristics of bump foil strips under various loads, including the effects of the friction forces between the compliant elements, local interaction forces, load distribution profiles, and bump configurations. In the experiments described here in, two-dimensional deflections of bump foils were recorded via an optical tracking system for a wide range of operating conditions to verify the feasibility of the theoretical model. Test results corroborate the theoretical model for the linear regions of load and the deflection parameters. The effects of the bearing design parameters, such as bump configuration, load profile, and surface coating and lubricant, on the structural characteristics of the bump foil strip were investigated. In addition, the source and mechanism of nonlinear behavior of the bump foil strips under light load conditions were examined, and more effective methods of achieving both Coulomb damping and optimum structural compliance were investigated. An understanding of the analytical and semi-empirical relations resulting from this work offers designers the potential for enhancing the design of high-performance compliant foil bearings.


2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.


Author(s):  
Miguel Pleguezuelos ◽  
Jose´ I. Pedrero ◽  
Miryam B. Sa´nchez

An analytic model to compute the efficiency of spur gears has been developed. It is based on the application of a non-uniform model of load distribution obtained from the minimum elastic potential criterion and a simplified non-uniform model of the friction coefficient along the path of contact. Both conventional and high transverse contact ratio spur gears have been considered. Analytical expressions for the power losses due to friction, for the transmitted power and for the efficiency are presented. From this model, a complete study of the influence of some design parameters (as the number of teeth, the gear ratio, the pressure angle, the addendum modification coefficient, etc.) on the efficiency is presented.


Author(s):  
S G Velonias ◽  
N A Aspragathos

This paper investigates some of the effects that structural characteristics and main non-linearities of a drive system have on systems response and its shaft fatigue. In the suggested approach a general drive system, including a motor, load and speed reducers, is modelled as a multi-degree-of-freedom torsional vibrations non-linear system. The differential equations of the system are formed automatically. The user of the developed program must input just the constants of the components. An algorithm to compute the loss of life of the shafts due to fatigue is also incorporated into the program. As an example, a drive system, including a motor, a speed reducer and load is modelled and tested under starting conditions. The effects of changing spring constants of the shafts and the backlash of the speed reducer are investigated.


2017 ◽  
Vol 14 (2) ◽  
pp. 166 ◽  
Author(s):  
Riadh Zaier ◽  
A. Al-Yahmedi

This paper presents the design procedure of a biomechanical leg, with a passive toe joint, which is capable of mimicking the human walking. This leg has to provide the major features of human gait in the motion trajectories of the hip, knee, ankle, and toe joints. Focus was given to the approach of designing the passive toe joint of the biomechanical leg in its role and effectiveness in performing human like motion. This study was inspired by experimental and theoretical studies in the fields of biomechanics and robotics. Very light materials were mainly used in the design process. Aluminum and carbon fiber parts were selected to design the proposed structure of this biomechanical leg, which is to be manufactured in the Mechanical Lab of the Sultan Qaboos University (SQU). The capabilities of the designed leg to perform the normal human walking are presented. This study provides a noteworthy and unique design for the passive toe joint, represented by a mass-spring damper system, using torsion springs in the foot segment. The working principle and characteristics of the passive toe joint are discussed.  Four-designed cases, with different design parameters, for the passives toe joint system are presented to address the significant role that the passive toe joint plays in human-like motion. The dynamic motion that is used to conduct this comparison was the first stage of the stance motion. The advantages of the presence of the passive toe joint in gait, and its effect on reducing the energy consumption by the other actuated joints are presented and a comparison between the four-designed cases is discussed.


1988 ◽  
Vol 1 (21) ◽  
pp. 176
Author(s):  
C. David Anglin ◽  
William F. Baird ◽  
Etienne P.D. Mansard ◽  
R. Douglas Scott ◽  
David J. Turcke

There is a general lack of knowledge regarding the nature and magnitude of loads acting on armour units used for the protection of rubblemound coastal structures. Thus, a comprehensive design procedure incorporating both the hydraulic stability and the structural integrity of the armour units does not exist. This paper presents the results of a detailed parametric study of the structural response of armour units to wave-induced loading in a physical breakwater model. The effect of the following design parameters is investigated: breakwater slope, armour unit location, wave period and wave height. This research has made a number of significant contributions towards the development of a comprehensive design procedure for concrete armour units. It has identified a linear relationship between the wave-induced stress in the armour units and the incident wave height. In addition, it has shown that the conditional probability of waveinduced stress given wave height can be estimated by a log-normal distribution. Finally, a preliminary design chart has been developed which incorporates both the structural integrity and the hydraulic stability of the armour units.


Author(s):  
Haoyu Ren ◽  
Qimin Li ◽  
Bing Liu ◽  
Zhenhuan Dou

High acceleration and extreme load are frequently appeared on high-speed locomotion of legged robot’s legs, imposing a challenging trade-off between weight and torque in leg design. This paper proposes a new design paradigm based on cable-drive and elastic linkage to solve the problem. The details of the design procedure are given, including the construction of the single leg. With the optimum design of the linkage mechanism, a combined index of the workspace and tracking error are used as object function, and taking geometrical design parameters of the linkage as optimization parameters. Based on the target workspace and the spring-loaded inverted pendulum model, the best foot trajectory in obstacle climbing and trotting gait are analyzed and illustrated. This paper built linkage cable-drive spring robot based on the legged module integration. Simulations and experiments indicate that linkage cable-drive spring robot performs stable trotting with control of the spring-loaded inverted pendulum model. Linkage cable-drive spring robot prototype experiments results are provided to verify the validity of the new method.


2017 ◽  
Vol 29 (7) ◽  
pp. 1315-1332 ◽  
Author(s):  
Mohtasham Mohebbi ◽  
Hamed Dadkhah ◽  
Hamed Rasouli Dabbagh

This article presents a new approach for designing effective smart base isolation systems composed of a low-damping linear base isolation and a semi-active magneto-rheological damper. The method is based on transforming the design procedure of the hybrid base isolation system into a constrained optimization problem. The magneto-rheological damper command voltages have been determined using H2/linear quadratic Gaussian and clipped-optimal control algorithms. Through a sensitivity analysis to identify the effective design parameters, base isolation and control algorithm parameters have been taken as design variables and optimally determined using genetic algorithm. To restrict increases in floor accelerations, the objective function of the optimization problem has been defined as minimizing the maximum base drift while putting specific constraint on the acceleration response. For illustration, the proposed method has been applied to design a semi-active hybrid isolation system for a four-story shear building under earthquake excitation. The results of numerical simulations show the effectiveness, simplicity, and capability of the proposed method. Furthermore, it has been shown that using the proposed method, the acceleration of the isolated structure can also be incorporated into design process and practically controlled with a slight sacrifice of control effectiveness in reducing the base drift.


Sign in / Sign up

Export Citation Format

Share Document