scholarly journals An Argument Against Augmenting the Lagrangean for Nonholonomic Systems

2009 ◽  
Vol 76 (3) ◽  
Author(s):  
Carlos M. Roithmayr ◽  
Dewey H. Hodges

Although it is known that correct dynamical equations of motion for a nonholonomic system cannot be obtained from a Lagrangean that has been augmented with a sum of the nonholonomic constraint equations weighted with multipliers, previous publications suggest otherwise. One published example that was proposed in support of augmentation purportedly demonstrates that an accepted method fails to produce correct equations of motion whereas augmentation leads to correct equations. This present paper shows that, in fact, the opposite is true. The correct equations, previously discounted on the basis of a flawed application of the Newton–Euler method, are verified by using Kane’s method together with a new approach for determining the directions of constraint forces.

Author(s):  
Arun K. Banerjee ◽  
Mark Lemak

This paper deals with the motion of mechanical systems with non-ideal constraints, defined as constraints where the forces associated with the constraint do work. The first objective of the paper is to show that two newly published formulations of equations of motion of systems with such non-ideal constraints are unnecessarily complex for situations where the non-ideal constraint force does not depend on the ideal constraint force, because they introduce and then eliminate these non-working constraint forces. We point out that a method already exists for nonideal constraints, namely, Kane’s equations, which are simpler because, among other things, they are based on automatic elimination of non-working constraints. The examples considered in these recent publications are worked out with Kane’s method to show the applicability and simplicity of Kane’s method for non-ideal constraints. A second objective of the paper is to present an alternative form of equations for systems where the non-ideal constraint force depends on the ideal constraint force, as in the case of Coulomb friction. The formulation is shown to lend itself naturally to also analyzing impact dynamics. The method is applied to the dynamics of a slug moving against friction on a moving ellipsoidal surface. Such a crude model may simulate, in essence, propellant motion in a tank in zero-g, or during docking of a spacecraft.


1993 ◽  
Vol 115 (4) ◽  
pp. 833-838 ◽  
Author(s):  
S. K. Agrawal

This paper proposes a formulation based on Kane’s method to form the dynamic equations of motion of multibody systems using dual vectors. Both holonomic and nonholonomic systems are considered in this formulation. An example of a holonomic and a nonholonomic system is worked out in detail using this formulation. This algorithm is shown to be advantageous for a class of holonomic systems which has cylindrical joints.


1998 ◽  
Vol 65 (3) ◽  
pp. 719-726 ◽  
Author(s):  
S. Djerassi

This paper is the third in a trilogy dealing with simple, nonholonomic systems which, while in motion, change their number of degrees-of-freedom (defined as the number of independent generalized speeds required to describe the motion in question). The first of the trilogy introduced the theory underlying the dynamical equations of motion of such systems. The second dealt with the evaluation of noncontributing forces and of noncontributing impulses during such motion. This paper deals with the linear momentum, angular momentum, and mechanical energy of these systems. Specifically, expressions for changes in these quantities during imposition and removal of constraints are formulated in terms of the associated changes in the generalized speeds.


1984 ◽  
Vol 51 (4) ◽  
pp. 899-903 ◽  
Author(s):  
J. W. Kamman ◽  
R. L. Huston

A new automated procedure for obtaining and solving the governing equations of motion of constrained multibody systems is presented. The procedure is applicable when the constraints are either (a) geometrical (for example, “closed-loops”) or (b) kinematical (for example, specified motion). The procedure is based on a “zero eigenvalues theorem,” which provides an “orthogonal complement” array which in turn is used to contract the dynamical equations. This contraction, together with the constraint equations, forms a consistent set of governing equations. An advantage of this formulation is that constraining forces are automatically eliminated from the analysis. The method is applied with Kane’s equations—an especially convenient set of dynamical equations for multibody systems. Examples of a constrained hanging chain and a chain whose end has a prescribed motion are presented. Applications in robotics, cable dynamics, and biomechanics are suggested.


Author(s):  
Timothy A. Loduha ◽  
Bahram Ravani

Abstract In this paper we present a method for obtaining first-order decoupled equations of motion for multi-rigid body systems. The inherent flexibility in choosing generalized velocity components as a function of generalized coordinates is used to influence the structure of the resulting dynamical equations. Initially, we describe how a congruency transformation can be formed that represents the transformation between generalized velocity components and generalized coordinate derivatives. It is shown that the proper choice for the congruency transformation will insure generation of first-order decoupled equations of motion for holonomic systems. In the case of nonholonomic systems, or more complex dynamical systems, where the appropriate congruency transformation may be difficult to obtain, we present a constraint relaxation method based on the use of orthogonal complements. The results are illustrated using several examples. Finally, we discuss numerical implementation of congruency transformations to achieve first-order decoupled equations for simulation purposes.


Robotica ◽  
2009 ◽  
Vol 27 (2) ◽  
pp. 259-268 ◽  
Author(s):  
Yongjie Zhao ◽  
Feng Gao

SUMMARYIn this paper, the inverse dynamics of the 6-dof out-parallel manipulator is formulated by means of the principle of virtual work and the concept of link Jacobian matrices. The dynamical equations of motion include the rotation inertia of motor–coupler–screw and the term caused by the external force and moment exerted at the moving platform. The approach described here leads to efficient algorithms since the constraint forces and moments of the robot system have been eliminated from the equations of motion and there is no differential equation for the whole procedure. Numerical simulation for the inverse dynamics of a 6-dof out-parallel manipulator is illustrated. The whole actuating torques and the torques caused by gravity, velocity, acceleration, moving platform, strut, carriage, and the rotation inertia of the lead screw, motor rotor and coupler have been computed.


1991 ◽  
Vol 15 (3) ◽  
pp. 235-256 ◽  
Author(s):  
X. Cyril ◽  
J. Angeles ◽  
A. Misra

In this paper the formulation and simulation of the dynamical equations of multibody mechanical systems comprising of both rigid and flexible-links are accomplished in two steps: in the first step, each link is considered as an unconstrained body and hence, its Euler-Lagrange (EL) equations are derived disregarding the kinematic couplings; in the second step, the individual-link equations, along with the associated constraint forces, are assembled to obtain the constrained dynamical equations of the multibody system. These constraint forces are then efficiently eliminated by simple matrix multiplication of the said equations by the transpose of the natural orthogonal complement of kinematic velocity constraints to obtain the independent dynamical equations. The equations of motion are solved for the generalized accelerations using the Cholesky decomposition method and integrated using Gear’s method for stiff differential equations. Finally, the dynamical behaviour of the Shuttle Remote Manipulator when performing a typical manoeuvre is determined using the above approach.


2013 ◽  
Vol 80 (2) ◽  
Author(s):  
Carlos M. Roithmayr ◽  
Dewey H. Hodges

A mechanical system is often modeled as a set of particles and rigid bodies, some of which are constrained in one way or another. A concise method is proposed for identifying a set of constraint forces needed to ensure the restrictions are met. Identification consists of determining the direction of each constraint force and the point at which it must be applied, as well as the direction of the torque of each constraint force couple, together with the body on which the couple acts. This important information can be determined simply by inspecting constraint equations written in vector form. For the kinds of constraints commonly encountered, the constraint equations are expressed in terms of dot products involving velocities of the affected points or particles and angular velocities of the bodies concerned. The technique of expressing constraint equations in vector form and identifying constraint forces by inspection is useful when one is deriving explicit, analytical equations of motion by hand or with the aid of symbolic algebra software, as demonstrated with several examples.


2005 ◽  
Vol 15 (09) ◽  
pp. 2747-2756 ◽  
Author(s):  
MARK LEVI

This paper gives a short overview of various applications of stabilization by vibration, along with the exposition of the geometrical mechanism of this phenomenon. More specifically, the following observation is described: a rapidly vibrated holonomic system can be approximated by a certain associated nonholonomic system. It turns out that effective forces in some rapidly vibrated (holonomic) systems are the constraint forces of an associated auxiliary nonholonomic constraint. In particular, we review a simple but remarkable connection between the curvature of the pursuit curve (the tractrix) on the one hand and the effective force on the pendulum with vibrating support. The latter observation is a part of a recently discovered close relationship between two standard classical problems in mechanics: (1) the pendulum whose suspension point executes fast periodic motion along a given curve, and (2) the Chaplygin skate (known also as the Prytz planimeter, or the "bicycle"). The former is holonomic, the latter is nonholonomic. The holonomy of the skate shows up in the effective motion of the pendulum. This relationship between the pendulum with a twirled pivot and the Chaplygin skate has somewhat unexpected physical manifestations, such as the drift of suspended particles in acoustic waves. Finally, a higher-dimensional example of "geodesic motion" on a vibrating surface is described.


2019 ◽  
Vol 48 (3) ◽  
pp. 259-282
Author(s):  
J. P. Meijaard ◽  
V. van der Wijk

AbstractThe use of principal points and principal vectors in the formulation of the equations of motion of a general 4R planar four-bar linkage is shown with two kinds of methods, one that opens kinematic loops and one that does not. The opened kinematic loop approach analyses the moving links as a system with a tree connectivity, introducing reaction forces for closing the loops. Compared with the conventional Newton–Euler method, this approach results in fewer equations and constraint forces, whereas the mass matrix entries remain meaningful, but there is a stronger coupling between the equations. Two equivalent mass formulations for the closed kinematic loop approach are presented, which need not open the loop and introduce loop constraint forces in the equations of motion. With the method of complex joint masses, the mass of the links closing the loops is represented by real and virtual equivalent masses, defining the principal points. The principle of virtual work with the inclusion of inertia terms is used to derive the equations of motion. As an example the dynamic balance conditions of the four-bar linkage are derived. With the method of the equivalent mass matrix it is shown how a constant mass matrix can be used to describe the dynamics of binary links with an arbitrary mass distribution. A four-bar linkage could be modelled with only three truss elements instead of the conventional result with three or more beam elements, which gives a significant reduction of the computational complexity.


Sign in / Sign up

Export Citation Format

Share Document